-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
329 lines (274 loc) · 13.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os, sys
import math
import random
import matplotlib.pyplot as plt
import pandas as pd
import networkx as nx
from pathlib import Path
import logging, sys
from tqdm import tqdm
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
seed = 42
random.seed(seed)
from ai2thor.controller import Controller
from ai2thor.util import metrics
import utils
import embeddings
def vector_distance_2D(v0, v1):
dx = v0['x'] - v1['x']
dz = v0['z'] - v1['z']
return math.sqrt(dx * dx + dz * dz)
def within_distance_check(query_pos, agent_pos, threshold=5):
_distance = ((query_pos['x'] - agent_pos['x'])**2 + (query_pos['z'] - agent_pos['z'])**2)
if _distance > threshold:
return False
return True
def plot_graph(g, shortest_path, agent_pos_node, query_pos_node):
pos = {i:i for i in g.nodes}
nx.draw_networkx(g, pos=pos, node_list=shortest_path, with_labels=False, node_size=8)
plt.plot(agent_pos_node[0], agent_pos_node[1], marker='*', color='red')
plt.plot(query_pos_node[0], query_pos_node[1], marker='*', color='yellow')
plt.show()
def get_closest_reachable_point(object_position, reaching_points):
"""
Finding closest reaching point for robot to the object
@args:
object_pos : dict with keys for x and z coordinates
reaching_points : 2D coordinates that are reachable by the robot
@returns:
target_pos : 2D tuple with x and z coordinates from reaching point
that is closest to the object_pos
"""
distances = [vector_distance_2D(object_position, reachable_point) for reachable_point in reaching_points]
min_dist = min(distances)
index = [idx for idx in range(len(distances)) if distances[idx] == min_dist]
idx = random.choice(index)
target_pos_node = (reaching_points[idx]['x'], reaching_points[idx]['z'])
return target_pos_node
def get_shortest_path(g, event, query_metadata, reaching_points):
"""
Finding shortest path
@args:
g: graph,
event: Ai2THOR's event metadata (returned on controller's step/reset),
query_metadata: Metadata of the query object,
reaching_points: the points that can be traversed by the robot in current env
@returns:
shortest path, agent_pos_node, query_pos_node
"""
assert (len(g.nodes) != 0)
agent_metadata = event.metadata['agent']
agent_pos_node = (agent_metadata['position']['x'], agent_metadata['position']['z'])
query_pos = {'x': float(query_metadata['position']['x']), 'z':float(query_metadata['position']['z'])}
query_pos_node = get_closest_reachable_point(query_pos, reaching_points)
shortest_path = nx.astar_path(g, agent_pos_node, query_pos_node)
shortest_path_length = len(shortest_path)
return shortest_path_length, agent_pos_node, query_pos_node
def initialize_scene(controller, scene, seed=seed):
"""
returns: controller after reset, graph of reachable positions
"""
controller.reset(scene=scene)
event = controller.step(action='GetReachablePositions')
g = nx.Graph()
reaching_points = event.metadata['actionReturn']
for coord in reaching_points:
for d in [-1, 1]:
node = (coord['x'], coord['z'])
if {'x': coord['x'] + d*GRIDSIZE, 'y': coord['y'], 'z': coord['z']} in reaching_points:
g.add_edge(node, (coord['x'] + d*GRIDSIZE, coord['z']), weight=1)
if {'x': coord['x'], 'y': coord['y'], 'z': coord['z'] + d*GRIDSIZE} in reaching_points:
g.add_edge(node, (coord['x'], coord['z'] + d*GRIDSIZE), weight=1)
if {'x': coord['x'] + d*GRIDSIZE, 'y': coord['y'], 'z': coord['z'] + d*GRIDSIZE} in reaching_points:
g.add_edge(node, (coord['x'] + d*GRIDSIZE, coord['z'] + d*GRIDSIZE), weight=2)
if {'x': coord['x'] - d*GRIDSIZE,'y': coord['y'], 'z': coord['z'] + d*GRIDSIZE} in reaching_points:
g.add_edge(node, (coord['x'] - d*GRIDSIZE, coord['z'] + d*GRIDSIZE), weight=2)
# Agent Initialize
if seed is not None:
random.seed(seed)
idx = random.randint(0,len(reaching_points)-1)
event = controller.step(action='Teleport',
x=reaching_points[idx]['x'],
y=reaching_points[idx]['y'],
z=reaching_points[idx]['z']
)
return controller, g, reaching_points, event
def initialize_query_object(query, event, g, reaching_points):
FOUND_OBJECT_FLAG = False
query_metadata = None
min_pathlength = 0
# agent_metadata = event.metadata['agent']
query_objects = []
for obj in event.metadata['objects']:
if obj['objectType'] == query:
query_objects.append(obj)
FOUND_OBJECT_FLAG = True #### Termination 1: Query object found and returned
# Computing the shortest path to each instance
if FOUND_OBJECT_FLAG:
pathlengths = [get_shortest_path(g, event, instance, reaching_points)[0] for instance in query_objects]
min_pathlength = min(pathlengths)
index = [idx for idx in range(len(pathlengths)) if pathlengths[idx] == min_pathlength][0]
query_metadata = query_objects[index]
# if not FOUND_OBJECT_FLAG: # Query object not present in scene
# controller.stop()
return FOUND_OBJECT_FLAG, query_metadata, min_pathlength
def runExperiment(controller, graph, query, reaching_points, emb,
STEP_MULTIPLE=1, VISIBLE_AREA_THRESHOLD=0.01):
"""
@args:
controller: controller for a respective scene/room
event: event on initializing agent
graph: graph constructed for a scene
query: query object should be in query object
reaching_points: dict of x,y,z coordinates reachable by robot
EMB: Choose an embedding from embedding.py
STEP_MULTIPLE: How many "Steps * 0.25" to move each time
VISIBLE_AREA_THRESHOLD: Objects that are lower than this ratio, are discarded
@returns:
int path_length if object found. (Steps, *.25 to find area)
-1: Query object not in scene
-2: Finished naviation and object not found
"""
print("Starting experiment with for query:", query)
event = controller.step(action='Pass')
### Termination 1: Query object not found in scene
FOUND_OBJECT_FLAG, query_metadata, shortest_path = initialize_query_object(query, event, graph, reaching_points)
if not FOUND_OBJECT_FLAG:
print('Object not found in scene', query)
return -1
# Find the groundtruth shortest path to the query
# agent_pos_node = event.metadata['agent']
__shortest_path, agent_pos_node, query_pos_node = get_shortest_path(graph, event, query_metadata, reaching_points)
print("Shortest path:", __shortest_path, "; Agent pos:", agent_pos_node, "; Query pos:", query_pos_node)
if (shortest_path != __shortest_path):
breakpoint()
# Start our navigation path
path_length = 0
object_found = False
visited_objects = []
# print ("Embeddings loaded Successfully")
while not object_found:
filtered_objects = []
for _step in range(4):
instances = utils.filter_objects_v2(event.instance_detections2D, VISIBLE_AREA_THRESHOLD)
filtered_objects += instances
event = controller.step(action='RotateRight', degrees=90)
# Filter objects that are smaller than size VISIBLE_AREA_THRESHOLD
filtered_objects_set = list(set(filtered_objects) - set(visited_objects))
agent_metadata = event.metadata['agent']
# If no more objects left to navigate
if len(filtered_objects_set) == 0:
print("No object to navigate to. filtered_objects_set is empty")
# controller.stop()
return -2
if path_length >= 10*shortest_path:
# print("Posible Oscilation")
# controller.stop()
return -3
# Find most similar object
sim_scores = []
for _object in filtered_objects_set:
# If reached query end
objtype = _object.split('|')[0]
if objtype == query: ### Query object found in field of view
# print("Object found in filtered set")
target_pos_node = get_closest_reachable_point(query_metadata['position'], reaching_points)
agent_pos_node = (agent_metadata['position']['x'], agent_metadata['position']['z'])
path_node_list = nx.astar_path(graph, agent_pos_node, target_pos_node)
path_length += len(path_node_list)
object_found = True #### Termination 2: Query object found and returned
# print("=>")
# print("Current Path length:", path_length)
# Else find embeddings:
else:
sim_scores.append(emb.get_similarity(query, objtype))
# Sorting filtered list
_val = [(x,y) for x, y in zip(filtered_objects_set, sim_scores)]
_val.sort(key=lambda x:x[1], reverse=True)
# print(_val)
if object_found:
break
obj_to_navigate = _val[0][0]
# print("In this iteration, navigating to:", obj_to_navigate)
pos = [float(x) for x in obj_to_navigate.split('|')[1:4]]
object_position = {'x': pos[0], 'y': pos[1], 'z': pos[2]}
target_pos_node = get_closest_reachable_point(object_position, reaching_points)
agent_pos_node = (agent_metadata['position']['x'], agent_metadata['position']['z'])
path_node_list = nx.astar_path(graph, agent_pos_node, target_pos_node)
# print('path_node_list:', path_node_list)
if STEP_MULTIPLE >= len(path_node_list)-1:
event = controller.step(action='Teleport', x=target_pos_node[0], y=pos[1], z=target_pos_node[1])
visited_objects.append(obj_to_navigate)
path_length += (STEP_MULTIPLE-1)
else:
_step = int(len(path_node_list)/STEP_MULTIPLE)
event = controller.step(action='Teleport', x=path_node_list[_step][0], y=pos[1], z=path_node_list[_step][1])
path_length += _step
# ### DEBUG
# print ("Agent location:", agent_pos_node)
# print("Current Path length:", path_length)
# print("Visited:", visited_objects)
# print("Filtered:", _val)
if within_distance_check(query_metadata['position'], agent_metadata['position'], threshold=5):
print("Object Found at distance ")
target_pos_node = get_closest_reachable_point(query_metadata['position'], reaching_points)
agent_pos_node = (agent_metadata['position']['x'], agent_metadata['position']['z'])
path_node_list = nx.astar_path(graph, agent_pos_node, target_pos_node)
path_length += len(path_node_list)
object_found = True
if query_pos_node in visited_objects:
# print("Object Found")
object_found = True
# controller.stop()
return [shortest_path, path_length]
def main(controller, floors, name):
total_runs = len(bedroom_floors)*len(query_list)
oscillation_count = 0
object_not_present_inscene = 0
no_object_to_navigate = 0
embeddings_list = ["GraphEmbedding", "RobocseEmbedding", "FastTextEmbedding", "Word2VecEmbedding"]
records = []
for emb_name in embeddings_list:
_embedding_to_call = getattr(embeddings, emb_name)
emb = _embedding_to_call()
for _room in floors:
_controller, _graph, _reaching_points, _event = initialize_scene(controller, _room)
for i, _query in enumerate(tqdm(query_list)):
assert (_graph.nodes() is not None)
_val = runExperiment(_controller, _graph, _query[0], _reaching_points, emb, STEP_MULTIPLE = 5, VISIBLE_AREA_THRESHOLD=0.01)
print('Embedding: ', emb_name, 'Scene: ', _room, 'Query: ', _query[0], 'seed: ', seed, '_val: ', str(_val))
records.append([emb_name, _room, _query[0], seed, str(_val)])
pd.DataFrame(records, columns = ["Embedding", "Scene", "Query", "Seed", "_val"]).to_csv('results_'+name+'_queries.csv', index = False)
breakpoint()
print("Done")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Test the object embeddings for search and navigation')
parser.add_argument('--floors', default='livingroom', help='room type to evaluate on')
parser.add_argument('--gridsize', default=0.25, help='gridsize of the rooms for robot to navigate on')
parser.add_argument('--step_multiple', default=3, help='step size to move with towards sub-goal object')
parser.add_argument('--visible_area_threshold', default=0.01, help='visible area threshold to detect objects')
args = parser.parse_args()
print(args)
# Parameters
GRIDSIZE = args.gridsize
STEP_MULTIPLE = args.step_multiple
VISIBLE_AREA_THRESHOLD = args.visible_area_threshold
# Generate list to navigate over
kitchens_floors = [f'FloorPlan{num}' for num in range(1,31)]
livingroom_floors = [f'FloorPlan{num}' for num in range(201,231)]
bedroom_floors = [f'FloorPlan{num}' for num in range(301,331)]
bathroom_floors = [f'FloorPlan{num}' for num in range(401,431)]
query_list = pd.read_csv("data/query.csv", header = None).values # Object list to sample from
# floors = [kitchens_floors, livingroom_floors, bedroom_floors, bathroom_floors]
if args.floors == 'kitchen':
floors = kitchen_floors
elif args.floors == 'livingroom':
floors = livingroom_floors
elif args.floors == 'bedroom':
floors = bedroom_floors
elif args.floors == 'bathroom':
floors = bathroom_floors
controller = Controller(scene="FloorPlan1", gridSize=GRIDSIZE, fieldOfView=120,
renderObjectImage=True, renderClassImage=True)
main(controller, floors, name=args.floors)