-
Notifications
You must be signed in to change notification settings - Fork 0
/
xml_to_csv.py
41 lines (35 loc) · 1.4 KB
/
xml_to_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET
def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall('object'):
value = (root.find('filename').text,
int(root.find('size')[0].text),
int(root.find('size')[1].text),
member[0].text,
int(member[4][0].text),
int(member[4][1].text),
int(member[4][2].text),
int(member[4][3].text)
)
xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df
def main():
for folder in ['train', 'test']:
### Tuan Recognition
# image_path = os.path.join(os.getcwd(), ('tuan_images/' + folder))
# xml_df = xml_to_csv(image_path)
# xml_df.to_csv(('tuan_images/' + folder + '_labels.csv'), index=None)
### Corgi Recognition
image_path = os.path.join(os.getcwd(), ('google_images/' + folder))
xml_df = xml_to_csv(image_path)
xml_df.to_csv(('google_images/' + folder + '_labels.csv'), index=None)
print('Successfully converted xml to csv.')
main()