-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
67 lines (53 loc) · 3.16 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import argparse
def str2bool(v):
return v.lower() in ['true']
def get_VAE_config():
parser = argparse.ArgumentParser()
# Model configuration.
parser.add_argument('--z_dim', type=int, default=8, help='dimension of domain labels')
parser.add_argument('--g_conv_dim', default=[128, 256, 512], help='number of conv filters in the first layer of G')
parser.add_argument('--d_conv_dim', type=int, default=[[128, 64], 128, [128, 64]],
help='number of conv filters in the first layer of D')
parser.add_argument('--lambda_cls', type=float, default=1, help='weight for domain classification loss')
parser.add_argument('--lambda_rec', type=float, default=10, help='weight for reconstruction loss')
parser.add_argument('--post_method', type=str, default='softmax', choices=['softmax', 'soft_gumbel', 'hard_gumbel'])
# Training configuration.
parser.add_argument('--batch_size', type=int, default=32, help='mini-batch size')
parser.add_argument('--num_epochs', type=int, default=100, help='number of epochs for training D')
parser.add_argument('--num_epochs_decay', type=int, default=2500, help='number of iterations for decaying lr')
parser.add_argument('--g_lr', type=float, default=0.001, help='learning rate for G')
parser.add_argument('--d_lr', type=float, default=0.001, help='learning rate for D')
parser.add_argument('--dropout', type=float, default=0., help='dropout rate')
parser.add_argument('--n_critic', type=int, default=5, help='number of D updates per each G update')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for Adam optimizer')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam optimizer')
parser.add_argument('--resume_epoch', type=int, default=None, help='resume training from this step')
# Test configuration.
parser.add_argument('--test_epochs', type=int, default=100, help='test model from this step')
# Miscellaneous.
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'])
parser.add_argument('--use_tensorboard', type=str2bool, default=False)
# Use either of these two datasets.
parser.add_argument('--mol_data_dir', type=str, default='data/qm9_5k.sparsedataset')
# parser.add_argument('--mol_data_dir', type=str, default='data/gdb9_9nodes.sparsedataset')
# Directories.
parser.add_argument('--saving_dir', type=str, default='../exp_results/VAE_test/')
# Step size.
parser.add_argument('--log_step', type=int, default=10)
parser.add_argument('--sample_step', type=int, default=1000)
parser.add_argument('--model_save_step', type=int, default=1)
parser.add_argument('--lr_update_step', type=int, default=500)
# For training
config = parser.parse_args()
config.mode = 'train'
config.lambda_wgan = 1.0
config.g_lr = config.d_lr = 1e-4
config.model_save_step = 1
config.batch_size = 128
config.num_epochs = 150
# For testing
# config.mode = 'test'
# config.saving_dir = 'exp_results/VAE/2020-06-03_13-38-00'
# config.resume_epoch = 150
return config