-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_qvae.py
71 lines (55 loc) · 2.43 KB
/
main_qvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import logging
from rdkit import RDLogger
from args import get_VAE_config
from util_dir.utils_io import get_date_postfix
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Remove flooding logs.
lg = RDLogger.logger()
lg.setLevel(RDLogger.CRITICAL)
from solver_qvae import Solver
from torch.backends import cudnn
def main(config):
# For fast training.
cudnn.benchmark = True
# Quantum circuit configuration
parser.add_argument('--quantum', type=bool, default=True, help='choose to use quantum vae')
parser.add_argument('--patches', type=int, default=1, help='number of quantum circuit patches')
parser.add_argument('--layer', type=int, default=1, help='number of repeated variational quantum layer')
parser.add_argument('--qubits', type=int, default=20, help='number of qubits and dimension of domain labels')
# Timestamp
if config.mode == 'train':
config.saving_dir = os.path.join(config.saving_dir, get_date_postfix())
config.log_dir_path = os.path.join(config.saving_dir, 'log_dir')
config.model_dir_path = os.path.join(config.saving_dir, 'model_dir')
config.img_dir_path = os.path.join(config.saving_dir, 'img_dir')
else:
a_test_time = get_date_postfix()
config.saving_dir = os.path.join(config.saving_dir)
config.log_dir_path = os.path.join(config.saving_dir, 'post_test', a_test_time, 'log_dir')
config.model_dir_path = os.path.join(config.saving_dir, 'model_dir')
config.img_dir_path = os.path.join(config.saving_dir, 'post_test', a_test_time, 'img_dir')
# Create directories if not exist.
if not os.path.exists(config.log_dir_path):
os.makedirs(config.log_dir_path)
if not os.path.exists(config.model_dir_path):
os.makedirs(config.model_dir_path)
if not os.path.exists(config.img_dir_path):
os.makedirs(config.img_dir_path)
# Logger
if config.mode == 'train':
log_p_name = os.path.join(config.log_dir_path, get_date_postfix() + '_logger.log')
logging.basicConfig(filename=log_p_name, level=logging.INFO)
logging.info(config)
# Solver for training and testing StarGAN.
if config.mode == 'train':
solver = Solver(config, logging)
elif config.mode == 'test':
solver = Solver(config)
else:
raise NotImplementedError
solver.train_and_validate()
if __name__ == '__main__':
config = get_VAE_config()
print(config)
main(config)