forked from WorldHealthOrganization/epi50-vaccine-impact
-
Notifications
You must be signed in to change notification settings - Fork 0
/
coverage.R
666 lines (568 loc) · 21.7 KB
/
coverage.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
###########################################################
# COVERAGE
#
# All coverage related functionality in one place.
#
###########################################################
# ---------------------------------------------------------
# Parent function for preparing vaccine coverage data
# ---------------------------------------------------------
prepare_coverage = function() {
# Extract coverage for VIMC pathogens
vimc_dt = coverage_vimc()
# However not every country is covered by VIMC for these pathogens
vimc_countries_dt = vimc_dt %>%
select(d_v_a_id, country, year, source) %>%
arrange(d_v_a_id, country, year) %>%
unique()
# For other countries and years, extract coverage from WIISE database
wiise_dt = coverage_wiise(vimc_countries_dt) %>%
# Smooth estimates to produce sensible impact estimates...
smooth_static_fvps() %>%
# Assume linear 1974-1980 scale up...
linear_coverage_scaleup() %>%
# Assume constant over most recent (post-COVID) years...
constant_coverage_extapolation()
# Incorporate non-routine SIA data (from WIISE)
sia_dt = coverage_sia(vimc_countries_dt) # See sia.R
# Combine all coverage data sources
source_dt = rbind(vimc_dt, wiise_dt, sia_dt) %>%
# Deal with pertussis special case...
wholecell_acellular_switch() %>%
# Deal with meningitis A special case...
meningococcal_conjugate()
# Sanity check that no zero entries remain
if (any(source_dt$fvps <= 1e-10))
stop("Trival coverage entries identified")
# Summarise - assuming partially targeted SIAs - for all d-v-a
everything_dt = source_dt %>%
lazy_dt() %>%
group_by(d_v_a_id, country, year, age) %>%
summarise(fvps = max(fvps), # Essentially a placeholder until next calculation
cohort = mean(cohort),
coverage = 1 - prod(1 - coverage)) %>% # Key assumption
ungroup() %>%
# Use combined coverage - unless FVPs already eclipses 100% (unlikely)
mutate(fvps = pmax(cohort * coverage, fvps)) %>%
as.data.table()
# Subset of the d-v-a for which require EPI50 analytics
coverage_dt = everything_dt %>%
filter(d_v_a_id %in% table("d_v_a")$d_v_a_id)
# Save this primary coverage datatable to file
save_table(coverage_dt, "coverage")
# Also save the supporting datatables to file
save_table(source_dt, "coverage_source")
save_table(everything_dt, "coverage_everything")
# ---- Data visualisation plots ----
# Plot total number of FVP over time
plot_total_fvps()
# Coverage data density by age
plot_coverage_age_density()
}
# ---------------------------------------------------------
# Extract coverage from VIMC outputs
# ---------------------------------------------------------
coverage_vimc = function() {
message(" > Coverage data: VIMC")
# Vaccines for which we'll use VIMC estimates
d_v_a_dt = table("d_v_a") %>%
filter(source == "vimc") %>%
bind_rows(table("d_v_a_extern")) %>%
select(d_v_a_id, disease, vaccine, activity)
# Recode vaccine IDs for consistency
vaccine_recode = c(
hib3 = "hib",
pcv3 = "pcv",
rcv2 = "rubella")
# Extract VIMC vaccine coverage data
vimc_dt = fread(paste0(o$pth$input, "vimc_coverage.csv")) %>%
select(disease, vaccine, activity = activity_type, country,
gender, year, age, fvps_adjusted, cohort_size) %>%
# Countries and timeframe of interest...
filter(country %in% all_countries(),
year %in% o$years) %>%
# Recode disease and vaccines...
mutate(disease = tolower(disease),
vaccine = tolower(vaccine),
vaccine = recode(vaccine, !!!vaccine_recode)) %>%
# Rubella special case...
mutate(activity = ifelse(
test = disease == "rubella",
yes = "all",
no = activity)) %>%
# Append d_v_a ID...
inner_join(y = d_v_a_dt,
by = c("disease", "vaccine", "activity")) %>%
# Summarise where ...
group_by(d_v_a_id, country, year, age) %>%
summarise(fvps = sum(fvps_adjusted),
cohort = sum(cohort_size),
coverage = fvps / cohort) %>%
ungroup() %>%
# Tidy up...
arrange(d_v_a_id, country, year, age) %>%
mutate(source = "vimc") %>%
as.data.table()
return(vimc_dt)
}
# ---------------------------------------------------------
# Extract coverage from WIISE database
# ---------------------------------------------------------
coverage_wiise = function(vimc_countries_dt) {
message(" > Coverage data: WIISE")
# ---- Load data ----
# File path for already-downloaded WIISE coverage data
raw_file = paste0(o$pth$input, "wiise_coverage.csv")
# If file has already been downloaded, read it now
if (file.exists(raw_file)) {
raw_dt = fread(raw_file)
} else { # Otherwise we'll need to download
# Non-VIMC coverage taken from WIISE database
raw_url = "https://whowiise.blob.core.windows.net/upload/coverage--2021.xlsx"
raw_dt = read_url_xls(raw_url, sheet = 1)
# Save csv file locally for easy re-loading
fwrite(raw_dt, file = raw_file)
}
# ---- Wrangle WIISE data ----
# Routine activities (or 'all' for non-VIMC pathogens)
d_v_a_dt = table("d_v_a") %>%
filter(source != "extern") %>%
bind_rows(table("d_v_a_extern")) %>%
filter(activity %in% c("routine", "all")) %>%
select(d_v_a_id, vaccine)
# Parse 'interventions' into EPI50 vaccines
reduced_dt = raw_dt %>%
# Convert to lower case...
setnames(names(.), tolower(names(.))) %>%
mutate_if(is.character, tolower) %>%
# Reduce columns...
select(intervention = antigen, country = code,
year, coverage, source = coverage_category)
# Parse 'interventions' into EPI50 vaccines
intervention_dt = reduced_dt %>%
# Remove any unknown countries...
mutate(country = toupper(country)) %>%
filter(country %in% all_countries(),
year %in% o$years) %>%
# Convert coverage to proportion...
mutate(coverage = coverage / 100) %>%
filter(coverage > 0) %>%
# Use WUENIC data as primary source...
mutate(wuenic = ifelse(source == "wuenic", coverage, NA),
coverage = ifelse(source != "wuenic", coverage, NA)) %>%
# Compare against average of all other sources...
lazy_dt() %>%
group_by(country, intervention, year) %>%
summarise(wuenic = mean(wuenic, na.rm = TRUE),
other = mean(coverage, na.rm = TRUE)) %>%
ungroup() %>%
# Salvage coverage from non-WUENIC sources...
mutate(wuenic = ifelse(is.nan(wuenic), other, wuenic)) %>%
select(country, intervention, year, coverage = wuenic) %>%
# Bound all non-trivial coverage values...
mutate(coverage = pmin(coverage, o$max_coverage)) %>%
filter(coverage > 0) %>%
# Interpret 'intervention'...
left_join(y = table("vaccine_dict"),
by = "intervention",
relationship = "many-to-many") %>%
filter(!is.na(vaccine)) %>%
# Append d-v-a details...
left_join(y = d_v_a_dt,
by = "vaccine") %>%
select(d_v_a_id, vaccine, intervention, country, year, coverage) %>%
arrange(d_v_a_id, vaccine, intervention, country, year) %>%
as.data.table()
# Plot coverage value density by intervention ID
# g = ggplot(intervention_dt) +
# aes(x = coverage,
# y = after_stat(count),
# colour = intervention,
# fill = intervention) +
# geom_density(alpha = 0.2) +
# facet_wrap(~vaccine)
# ---- Separately store global coverages ----
# Global vaccine coverage according to WUENIC
global_dt = reduced_dt %>%
filter(country == "global",
source == "wuenic") %>%
select(-source) %>%
# Interpret 'intervention'...
left_join(y = table("vaccine_dict"),
by = "intervention",
relationship = "many-to-many") %>%
# Append d-v-a details...
inner_join(y = d_v_a_dt,
by = "vaccine") %>%
select(d_v_a_id, vaccine, year, coverage) %>%
arrange(d_v_a_id, vaccine, year) %>%
# Coverage as a proportion...
mutate(coverage = coverage / 100)
# Save table in cache
save_table(global_dt, "coverage_global")
# ---- Calculate FVPs (non pregnancy vaccines) ----
# Age at vaccination (deal with pregnancy vaccines after)
age_dt = table("vaccine_age") %>%
filter(age != "NA") %>%
mutate(age = as.numeric(age))
# Append age and calculate FVPs
wiise_age_dt = intervention_dt %>%
# Remove countries and years already covered by VIMC...
left_join(y = vimc_countries_dt,
by = c("d_v_a_id", "country", "year")) %>%
filter(is.na(source)) %>%
select(-intervention, -source) %>%
# Append ages...
left_join(y = age_dt,
by = "vaccine") %>%
filter(!is.na(age)) %>%
# Calculate fully vaccinated people...
left_join(y = table("wpp_pop"),
by = c("country", "year", "age")) %>%
mutate(sheduled_doses = coverage * pop) %>%
calculate_fvps() %>%
as.data.table()
# ---- Calculate FVPs (pregnancy vaccines) ----
# Age at vaccination for pregnancy vaccines
age_birth_dt = table("vaccine_age") %>%
left_join(y = d_v_a_dt,
by = "vaccine") %>%
filter(age == "NA") %>%
select(d_v_a_id) %>%
expand_grid(table("wpp_fertility")) %>%
# Remove trivial values...
filter(fertility > 0) %>%
group_by(country, year) %>%
mutate(fertility = fertility / sum(fertility)) %>%
ungroup() %>%
as.data.table()
# Append age and calculate FVPs
wiise_pregnancy_dt = intervention_dt %>%
select(-intervention) %>%
# Reduce down to pregnancy vaccines...
left_join(y = age_dt,
by = "vaccine") %>%
filter(is.na(age)) %>%
# Coverage in this context is of newborns...
mutate(age = 0) %>%
left_join(y = table("wpp_pop"),
by = c("country", "year", "age")) %>%
mutate(sheduled_doses = coverage * pop) %>%
calculate_fvps() %>%
# But we want FVPs in terms of mothers...
select(-age, -cohort, -coverage) %>%
left_join(y = age_birth_dt,
by = c("d_v_a_id", "country", "year"),
relationship = "many-to-many") %>%
mutate(fvps = fvps * fertility) %>%
# Append parental demographics...
left_join(y = table("wpp_pop"),
by = c("country", "year", "age")) %>%
rename(cohort = pop) %>%
# Calculate coverage (of mothers)...
mutate(fvps = pmin(fvps, cohort * o$max_coverage),
coverage = fvps / cohort) %>%
# Tidy up...
select(all_names(wiise_age_dt)) %>%
as.data.table()
# Combine into signle datatable
wiise_dt = wiise_age_dt %>%
rbind(wiise_pregnancy_dt) %>%
arrange(d_v_a_id, country, year, age) %>%
mutate(source = "wiise")
return(wiise_dt)
}
# ---------------------------------------------------------
# FVP calculation considering boosters
# ---------------------------------------------------------
calculate_fvps = function(coverage_dt) {
# NOTES:
# - Using mean for pop as all values should all equal
# - Coverage bounded by o$max_coverage
# For primary schedule, assume all new FVPs
primary_dt = coverage_dt %>%
lazy_dt() %>%
filter(!grepl("_bx$", vaccine)) %>%
group_by(d_v_a_id, country, year, age) %>%
summarise(fvps = sum(sheduled_doses), # Using sum
cohort = mean(pop)) %>%
ungroup() %>%
as.data.table()
# All booster doses
booster_dt = coverage_dt %>%
filter(grepl("_bx$", vaccine))
# Check whether trivial
if (nrow(booster_dt) == 0) {
booster_dt = NULL
} else { # Otherwise, summarise...
# For boosters, consecutive doses are for the same person
booster_dt %<>%
lazy_dt() %>%
group_by(d_v_a_id, country, year, age) %>%
summarise(fvps = max(sheduled_doses), # Using max
cohort = mean(pop)) %>%
ungroup() %>%
as.data.table()
}
# Re-bind everything together and calculate coverage
fvps_dt = rbind(primary_dt, booster_dt) %>%
mutate(fvps = pmin(fvps, cohort * o$max_coverage),
coverage = fvps / cohort)
return(fvps_dt)
}
# ---------------------------------------------------------
# Assume a linear scale up prior to data start
# ---------------------------------------------------------
linear_coverage_scaleup = function(coverage_dt) {
# Years we will scale up over
scaleup_years = min(o$years) : (min(coverage_dt$year) - 1)
# Income status in first year of data
income_dt = coverage_dt %>%
# Remove reference to FVPs, we'll recalculate...
select(-fvps, -cohort) %>%
# Append income status over time...
left_join(y = table("income_status"),
by = c("country", "year")) %>%
# Non-trivial values from first year of data...
filter(year == min(year))
# Function to repeat trivialised coverage datatable for given year
rep_fn = function(rep_year)
income_dt %>% mutate(year = rep_year, coverage = NA)
# For non-high-income countries, create blank scale up datatable
template_dt = scaleup_years %>%
# Repeat trivialised coverage datatable for each year
lapply(rep_fn) %>%
rbindlist() %>%
rbind(income_dt) %>%
arrange(d_v_a_id, country, age, year) %>%
# Only interested in non-HIC...
filter(income != "hic")
# Set 1974 coverage to zero and linearly scale up to 1980
if (o$pre_1980_assumption == "linear") {
# NOTE: A conservative assumption
scaleup_dt = template_dt %>%
# Start at zero coverage...
mutate(coverage = ifelse(
test = year == min(scaleup_years),
yes = 0,
no = coverage)) %>%
# Linearly interpolate from zero to 1980 coverage...
group_by(d_v_a_id, country, age) %>%
mutate(coverage = na_interpolation(coverage)) %>%
ungroup() %>%
as.data.table()
}
# Alternatively assume constant over this period
if (o$pre_1980_assumption == "constant") {
# NOTE: An ambitious assumption
scaleup_dt = template_dt %>%
group_by(d_v_a_id, country, age) %>%
fill(coverage, .direction = "up") %>%
ungroup() %>%
as.data.table()
}
# Append cohort size and calculate FVPs
scaleup_dt %<>%
# Remove 1980 value to avoid repetition...
filter(year %in% scaleup_years,
coverage > 0) %>%
# Calculate FVPs...
left_join(y = table("wpp_pop"),
by = c("country", "year", "age")) %>%
rename(cohort = pop) %>%
mutate(fvps = cohort * coverage) %>%
# Tidy up...
select(all_names(coverage_dt)) %>%
arrange(d_v_a_id, country, year, age) %>%
as.data.table()
# For high-income countries, assume constant over this period
constant_dt = income_dt %>%
filter(income == "hic") %>%
# KEY ASSUMPTION: Repeat coverage for early years...
select(-year) %>%
expand_grid(year = scaleup_years) %>%
# Append cohort size and calculate FVPs...
left_join(y = table("wpp_pop"),
by = c("country", "year", "age")) %>%
rename(cohort = pop) %>%
mutate(fvps = cohort * coverage) %>%
# Tidy up...
select(all_names(coverage_dt)) %>%
arrange(d_v_a_id, country, year, age) %>%
as.data.table()
# Bind these two datatables into coverage
coverage_dt %<>%
rbind(scaleup_dt) %>%
rbind(constant_dt) %>%
arrange(d_v_a_id, country, year, age)
return(coverage_dt)
}
# ---------------------------------------------------------
# Assume constant coverage over most recent years
# ---------------------------------------------------------
constant_coverage_extapolation = function(coverage_dt) {
# Extrapolate coverage data from most recent year
extrap_dt = coverage_dt %>%
# Remove reference to FVPs, we'll recalculate...
select(-fvps, -cohort) %>%
# Years from which to extrapolate (3 years with the past 5)...
filter(year >= max(o$years) - 5) %>%
group_by(d_v_a_id, country, age) %>%
slice_max(year, n = 3, with_ties = FALSE) %>%
ungroup() %>%
# Mean coverage over these recent years...
group_by(d_v_a_id, country, age) %>%
summarise(year = max(year) + 1,
coverage = mean(coverage)) %>%
ungroup() %>%
# KEY ASSUMPTION: Repeat coverage for most recent years...
expand_grid(extrap_year = o$years) %>%
group_by(d_v_a_id, country) %>%
filter(extrap_year >= year) %>%
ungroup() %>%
select(d_v_a_id, country, age,
year = extrap_year, coverage) %>%
# Append cohort size and calculate FVPs...
left_join(y = table("wpp_pop"),
by = c("country", "year", "age")) %>%
rename(cohort = pop) %>%
mutate(fvps = cohort * coverage,
source = "wiise") %>%
# Tidy up...
select(all_names(coverage_dt)) %>%
arrange(d_v_a_id, country, year, age) %>%
as.data.table()
# Bind these two datatables into coverage
coverage_dt %<>%
rbind(extrap_dt) %>%
arrange(d_v_a_id, country, year, age)
return(coverage_dt)
}
# ---------------------------------------------------------
# Apply smoother for static model pathogens
# ---------------------------------------------------------
smooth_static_fvps = function(coverage_dt) {
# If no coverage smoothing required, return out now
if (is.null(o$gbd_coverage_smoother))
return(coverage_dt)
# Otherwise continue...
# Apply smoothing function to subset of data
kernal_smooth = function(x, y) {
# Smooth with kernel (stats package)
if (o$gbd_coverage_smoother == "kernel")
fit = ksmooth(x, y, "normal",
bandwidth = o$kernal_bandwidth,
x.points = x)
# Smooth with splines (stats package)
if (o$gbd_coverage_smoother == "spline")
fit = smooth.spline(x, y, all.knots = TRUE)
# Extract smoothed values
fvps_smooth = fit$y
return(fvps_smooth)
}
# Vaccine IDs to apply to: static model pathogens only
static_id = table("d_v_a")[source == "static", d_v_a_id]
# Apply smoothing
smooth_dt = coverage_dt %>%
select(-cohort, -coverage) %>%
filter(d_v_a_id %in% static_id) %>%
group_by(d_v_a_id, country, age) %>%
mutate(fvps_smooth = kernal_smooth(year, fvps)) %>%
ungroup() %>%
as.data.table()
# Insert smoothed avlues into full coverage datatable
smoothed_coverage_dt = smooth_dt %>%
# Re-append year-age cohort size...
left_join(y = table("wpp_pop"),
by = c("country", "year", "age")) %>%
select(d_v_a_id, country, year, age,
fvps = fvps_smooth,
cohort = pop) %>%
# Recalculate annual coverage...
mutate(coverage = pmin(fvps / cohort, 1)) %>%
# Append non-smoothed coverage...
bind_rows(coverage_dt[!d_v_a_id %in% static_id]) %>%
fill(source, .direction = "updown") %>%
arrange(d_v_a_id, country, year, age)
# Save table for diagnostic plots
save_table(smooth_dt, "smoothed_fvps")
return(smoothed_coverage_dt)
}
# ---------------------------------------------------------
# Distribute across pertussis vaccine types by country and year
# ---------------------------------------------------------
wholecell_acellular_switch = function(coverage_dt) {
# Details of who switched to acellular pertussis and when
switch_dt = table("income_status") %>%
filter(year == o$wholecell_acellular_switch,
income == "hic") %>%
mutate(year = as.numeric(year)) %>%
select(country, switch_year = year)
# IDs of both wholecell and acellular pertussis vaccines
id = list(
wp = table("d_v_a")[vaccine == "wper", d_v_a_id],
ap = table("d_v_a")[vaccine == "aper", d_v_a_id])
# Only a subset of that defined should be acelluar
acellular_dt = coverage_dt %>%
filter(d_v_a_id == id$ap) %>%
left_join(y = switch_dt,
by = "country") %>%
replace_na(list(switch_year = Inf)) %>%
filter(year > switch_year) %>%
select(-switch_year)
# Everything else should be wholecell
wholecell_dt = acellular_dt %>%
select(country, year, age, source) %>%
mutate(remove = TRUE) %>%
full_join(y = coverage_dt,
by = c("country", "year", "age", "source")) %>%
filter(d_v_a_id %in% unlist(id),
is.na(remove)) %>%
select(-remove) %>%
# Covert to wholecell...
mutate(d_v_a_id = id$wp) %>%
group_by(d_v_a_id, country, year, age, source) %>%
summarise(fvps = sum(fvps),
cohort = mean(cohort)) %>%
ungroup() %>%
# Recalculate coverage...
mutate(coverage = pmin(fvps / cohort, 1)) %>%
select(all_names(coverage_dt)) %>%
as.data.table()
# Recombine all data
switched_dt = coverage_dt %>%
filter(!d_v_a_id %in% unlist(id)) %>%
rbind(wholecell_dt) %>%
rbind(acellular_dt) %>%
arrange(d_v_a_id, country, year, age)
# Sanity check that we haven't altered total number of FVPs
diff = sum(coverage_dt$fvps) - sum(switched_dt$fvps)
if (abs(diff) > 1e-6)
stop("FVPs have been lost/gained through wholecell-acellular switch")
return(switched_dt)
}
# ---------------------------------------------------------
# Remove effects on men_conj vaccine in locations without menA burden
# ---------------------------------------------------------
meningococcal_conjugate = function(coverage_dt) {
# Meningitis A d-v-a IDs
mena_id = table("d_v_a") %>%
filter(disease == "mena") %>%
pull(d_v_a_id)
# Meningitis A belt according to VIMC
mena_countries = coverage_dt %>%
filter(d_v_a_id %in% mena_id,
source == "vimc") %>%
pull(country) %>%
unique()
# Remove coverage for countries outside of the Men A belt
mena_belt_dt = coverage_dt %>%
filter(d_v_a_id %in% mena_id,
country %in% mena_countries)
# Update coverage datatable
updated_dt = coverage_dt %>%
filter(!d_v_a_id %in% mena_id) %>%
rbind(mena_belt_dt) %>%
arrange(d_v_a_id, country, year, age)
return(updated_dt)
}