forked from WorldHealthOrganization/epi50-vaccine-impact
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexternal.R
597 lines (480 loc) · 18.5 KB
/
external.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
###########################################################
# EXTERNAL
#
# Prepare, simulate (if appropriate), and extract results
# for external polio and measles models.
#
###########################################################
# ---------------------------------------------------------
# Parent function for extracting results for all external models
# ---------------------------------------------------------
run_external = function() {
# Only continue if specified by run_module
if (!is.element(2, o$run_module)) return()
message("* Preparing external models")
# Create templates for measles and polio models
template_measles()
template_polio()
# Simulate DynaMICE measles model
simulate_dynamice()
# Format external modelling results for EPI50 use
format_measles()
format_polio()
# Extract results from all extern models
extract_extern_results()
# Generate samples from extern model results
extern_uncertainty() # See uncertainty.R
# ---- Data visualisation plots ----
# Plot total number of FVP over time
plot_total_fvps()
# Coverage data density by age
plot_coverage_age_density()
}
# ---------------------------------------------------------
# Create results template for measles models
# ---------------------------------------------------------
template_measles = function() {
message(" > Creating results template: measles")
# All metrics of intrerest (epi outcomes and number of doses)
metrics = qc(deaths, dalys, MCV1_doses, MCV2_doses, SIA_doses)
# Full factorial of factors: scenario, country, year, age, metric
template_dt =
expand_grid(
scenario = c("no_vaccine", "vaccine"),
country = all_countries(),
year = o$years,
age = o$ages,
metric = metrics) %>%
# Append random result placeholders...
mutate(value = runif(n())) %>%
as.data.table()
# Write to file
file = paste0(o$pth$template, "template_measles.csv")
fwrite(template_dt, file = file)
}
# ---------------------------------------------------------
# Create results template for polio model
# ---------------------------------------------------------
template_polio = function() {
message(" > Creating results template: polio")
# All metrics of intrerest (epi outcomes and number of doses)
metrics = qc(paralytic_cases, deaths, dalys, opv_doses, ipv_doses)
# Two different stratifications of setting
geo = list(
region = sort(unique(table("country")$region)),
income = sort(unique(table("income_status")$income)))
# Repeat process for setting stratification
for (setting in names(geo)) {
# Full factorial of factors: scenario, setting, year, age, metric
template_dt =
expand_grid(
scenario = c("no_vaccine", "vaccine"),
setting = geo[[setting]],
year = o$years,
age_group = paste1("age_group", 1 : 7),
metric = sort(metrics)) %>%
# Append random result placeholders...
mutate(value = runif(n())) %>%
rename(!!setting := setting) %>%
as.data.table()
# Write to file
file = paste0(o$pth$template, "template_polio_", setting, ".csv")
fwrite(template_dt, file = file)
}
}
# ---------------------------------------------------------
# Prepare and simulate DynaMICE measles model
# ---------------------------------------------------------
simulate_dynamice = function() {
# Return out now if direct simulation not required
if (!o$simulate_dynamice)
return()
# Extract path of local DynaMICE repo
repo_path = repo_exists("dynamice")
# Throw error if repo doesn't exist locally
if (is.null(repo_path)) {
# Construct error message
err_msg = paste0(
"In order to simulate the DynaMICE model, you must: ",
"\n 1) Clone the repo '", o$github_dynamice, "'",
"\n 2) Have access to a SLURM-queued cluster")
stop(err_msg)
}
message("\n----- Simulating DynaMICE -----\n")
# ---- Dynamice coverage inputs ----
message("* Model set up")
# Convert EPI50-DynaMICE vaccine references
dynamice_dict = c(
mcv1 = "MCV1",
mcv2 = "MCV2",
measles = "SIA")
# Load EPI50 coverage details
coverage_dt = table("coverage_everything") %>%
inner_join(y = table("d_v_a_extern"),
by = "d_v_a_id") %>%
filter(vaccine %in% names(dynamice_dict)) %>%
mutate(vaccine = recode(vaccine, !!!dynamice_dict)) %>%
select(vaccine, country, year, age, coverage)
# Routine coverage - no age disaggregation required
routine_dt = coverage_dt %>%
filter(vaccine != "SIA") %>%
select(vaccine, country, year, coverage) %>%
# Summarise over age groups (noting that coverage the same)...
group_by(vaccine, country, year) %>%
summarise(coverage = mean(coverage)) %>%
ungroup() %>%
as.data.table()
# Non-routine coverage - requires additonal details
sia_dt = coverage_dt %>%
filter(vaccine == "SIA") %>%
# Convert coverage to char to enable pivot...
mutate(coverage = round(coverage, 8),
coverage = as.character(coverage)) %>%
# Group by all but age to find age bounds per campaign...
group_by(vaccine, country, year, coverage) %>%
mutate(age_first = min(age),
age_last = max(age)) %>%
ungroup() %>%
# Reduce down to individual campaigns...
select(-age) %>%
unique() %>%
# Convert coverage back to numeric...
mutate(coverage = as.numeric(coverage)) %>%
# Append any other additional variables needed...
mutate(mid_day = 180) %>% # NOTE: A placeholder assumption
# Assume trivial subntaional coverage...
mutate(coverage_subnat = coverage, # NOTE: A placeholder assumption
.after = coverage) %>%
as.data.table()
# ---- Save input files to DynaMICE repo ----
# Concatenate routine and non-routine coverage data
data_dt = bind_rows(routine_dt, sia_dt) %>%
arrange(vaccine, country, year,
age_first, age_last)
# Inputs for 'all vaccine' and 'no vaccine' scenarios
data_list = list(
mcv1_mcv2_sia = data_dt,
nomcv = data_dt[coverage == 0])
# Iterate through scenarios
for (scenario in names(data_list)) {
# Construct file path to save to (in DynaMICE repo)
save_path = file.path(repo_path, "input", "coverage", "coverage")
save_file = paste0(paste1(save_path, scenario), ".csv")
# Save data as a csv
fwrite(data_list[[scenario]], file = save_file)
}
# ---- Other config files ----
# Save full EPI50 country list
country_dt = data.table(country = all_countries())
country_file = file.path(repo_path, "config", "countries.csv")
# Also save associated regions
region_dt = table("country")[, .(country, region)]
region_file = file.path(repo_path, "config", "regions.csv")
# Write to config folder
fwrite(country_dt, file = country_file)
fwrite(region_dt, file = region_file)
# ---- Simulate model ----
# Set working directory to DynaMICE repo
setwd(repo_path)
# Launch to model
#
# NOTE: For full functionality, step should be set to 1 : 3 in DynaMICE repo
system("sh launch.sh")
# Once we're done, reset working directory to EPI50 repo
setwd(o$pth$code)
message("\n----- DynaMICE complete -----\n")
# Name of DynaMICE results file that should have been produced
results_name = "epi50_dynamice_results.rds"
results_file = file.path(repo_path, "output", results_name)
# Copy results file from DynaMICE repo to EPI50 repo
invisible(file.copy(results_file, o$pth$extern, overwrite = TRUE))
}
# ---------------------------------------------------------
# Format polio modelling results for EPI50 use
# ---------------------------------------------------------
format_measles = function() {
message(" > Appending to measles outcomes")
# Dictionary for converting dose names
dose_dict = c(
MCV1_doses = "mcv1",
MCV2_doses = "mcv2",
SIA_doses = "measles")
# Load template of measles results
template_path = paste0(o$pth$extern, "template")
template_file = file.path(template_path, "template_measles.csv")
template_dt = fread(template_file) %>%
mutate(metric = recode(metric, !!!dose_dict)) %>%
select(-value)
# Load measles vaccine coverage by vaccine
fvps_dt = table("coverage_everything") %>%
inner_join(y = table("d_v_a_extern"),
by = "d_v_a_id") %>%
filter(disease == "measles") %>%
mutate(scenario = "vaccine") %>%
select(scenario, country, year, age,
metric = vaccine, value = fvps)
# All measles models to append to
measles_models = table("extern_models") %>%
filter(disease == "measles") %>%
pull(model)
# Iterate through measles models
for (model in measles_models) {
# File names for raw and formatted results
raw_name = paste1("epi50", model, "results")
table_name = paste1("extern", model, "results")
# Load raw results, removing any appended FVPs info
raw_dt = read_rds("extern", raw_name) %>%
filter(!metric %in% dose_dict)
# Append original FVPs from coverage table
model_dt = template_dt %>%
lazy_dt() %>%
left_join(y = rbind(raw_dt, fvps_dt),
by = names(template_dt)) %>%
replace_na(list(value = 0)) %>%
as.data.table()
# Save EPI50-formatted results for this model
save_table(model_dt, table_name)
}
}
# ---------------------------------------------------------
# Format polio modelling results for EPI50 use
# ---------------------------------------------------------
format_polio = function() {
message(" > Interpolating polio outcomes")
# Load raw polio results
raw_dt = read_rds("extern", "epi50_polio_results") %>%
mutate(age_group = paste1("age_group", age_group))
# ---- Expand age groups in single years ----
# Age structure of polio outcomes
age_bounds = c(0, 1, 5, 10, 15, 40)
# Age groupings as defined in polio results
age_group_dt = data.table(age = age_bounds) %>%
mutate(age_group = paste1("age_group", 1 : n()))
# Construct age datatable to expand age bins to single years
age_dt = data.table(age = o$ages) %>%
left_join(y = age_group_dt,
by = "age") %>%
fill(age_group, .direction = "downup") %>%
group_by(age_group) %>%
add_count(age_group) %>%
ungroup() %>%
as.data.table()
# ---- Crudely expand regions to countries ----
# We'll (very crudely) disaggregate results into countries
#
# NOTE: This is simply to have consistent format with other diseases
setting_dt = table("country") %>%
select(region, country) %>%
# Append population size in most recent year...
mutate(year = max(o$years)) %>%
left_join(y = table("wpp_pop"),
by = c("country", "year")) %>%
# Summarise over all ages...
group_by(region, country) %>%
summarise(pop = sum(pop)) %>%
ungroup() %>%
# Country population share by region...
group_by(region) %>%
mutate(pop_share = pop / sum(pop)) %>%
ungroup() %>%
select(-pop) %>%
as.data.table()
# ---- Disaggregate raw results by country and age ----
# Bring it all together to disaggregate raw results...
polio_dt = raw_dt %>%
complete(scenario, region, year = o$years, age_group, metric) %>%
arrange(scenario, region, year, age_group, metric) %>%
# Fill most recent year...
group_by(scenario, region, age_group, metric) %>%
fill(value, .direction = "down") %>%
ungroup() %>%
# Expand age groups to all ages...
lazy_dt() %>%
full_join(age_dt, by = "age_group",
relationship = "many-to-many") %>%
select(-age_group) %>%
# Expand regions to countries...
full_join(setting_dt, by = "region",
relationship = "many-to-many") %>%
select(-region) %>%
# Divide results through for each country and age ...
mutate(value = (value * pop_share) / n) %>%
select(scenario, country, year, age, metric, value) %>%
arrange(scenario, country, year, age) %>%
as.data.table()
# ---- Sanity checks ----
# Function to compute total outcomes
total_fn = function(dt, name) {
# Total outcomes by scenario and metric
total_dt = dt %>%
lazy_dt() %>%
group_by(scenario, metric) %>%
summarise(value = sum(value)) %>%
ungroup() %>%
rename(!!name := value) %>%
as.data.table()
return(total_dt)
}
# Compare raw with formatted model outcomes
check_dt = polio_dt %>%
filter(year <= max(raw_dt$year)) %>%
total_fn("clean") %>%
left_join(y = total_fn(raw_dt, "raw"),
by = c("scenario", "metric")) %>%
mutate(diff = abs(clean - raw) / pmin(clean, raw),
err = diff > 1e-6) %>%
replace_na(list(err = FALSE))
# Throw an error if any differences are identified
if (any(check_dt$err))
stop("Error in country or age polio results disaggregation")
# ---- Finally, convert doses to FVPs ----
# Divide doses through to get FVPs
polio_dt %<>%
mutate(metric = str_remove(metric, "_doses$")) %>%
left_join(y = table("regimen"),
by = c("metric" = "vaccine")) %>%
replace_na(list(schedule = 1)) %>%
mutate(value = value / as.numeric(schedule)) %>%
select(-schedule) %>%
as.data.table()
# Save EPI50-formatted polio results
save_table(polio_dt, "extern_polio_results")
}
# ---------------------------------------------------------
# Extract results from all extern models
# ---------------------------------------------------------
extract_extern_results = function() {
message(" > Extracting results from all external models")
# ---- Extract outcomes ----
# Function for extracting model outcomes
extract_fn = function(model) {
message(" ~ ", model)
# Name of formatted table for this model
model_table = paste1("extern", model, "results")
# Extract death estimates from vaccine and no vaccine scenarios
model_dt = table(model_table) %>%
mutate(model = model, .before = 1)
return(model_dt)
}
# All extern models and associated disease name
all_models = table("extern_models") %>%
select(model, disease) %>%
pivot_wider(
names_from = model,
values_from = disease) %>%
unlist()
# Load historical outcomes from all models
all_models_dt = names(all_models) %>%
lapply(extract_fn) %>%
rbindlist() %>%
mutate(disease = all_models[model]) %>%
left_join(y = table("d_v_a"),
by = "disease") %>%
select(d_v_a_id, model, scenario,
country, year, age, metric, value)
# Summary of each model by region and scenario
all_models_summary_dt = all_models_dt %>%
lazy_dt() %>%
filter(metric == "deaths") %>%
left_join(y = table("country"),
by = "country") %>%
group_by(d_v_a_id, model, scenario, region, year) %>%
summarise(deaths = sum(value)) %>%
ungroup() %>%
as.data.table()
# Save for plotting purposes
save_table(all_models_summary_dt, "extern_all_models")
# ---- Historical deaths and DALYs ----
message(" - Summarising historical estimates")
# Weighting of each model grouped by disease
weight_dt = table("extern_models") %>%
group_by(disease) %>%
mutate(model_weight = weight / sum(weight)) %>%
ungroup() %>%
select(model, weight = model_weight) %>%
as.data.table()
# Summarise by d-v-a (across all models)...
historical_dt = all_models_dt %>%
lazy_dt() %>%
left_join(y = weight_dt,
by = "model") %>%
group_by(d_v_a_id, scenario, country, year, age, metric) %>%
summarise(value = sum(value * weight)) %>%
ungroup() %>%
as.data.table()
# Historical deaths in each scenario
#
# NOTE: Used for final plotting purposes
extern_deaths_dt = historical_dt %>%
filter(metric == "deaths") %>%
pivot_wider(names_from = scenario,
values_from = value) %>%
as.data.table()
# Save in table cache
save_table(extern_deaths_dt, "extern_deaths")
# ---- Deaths and DALYs averted ----
message(" - Calculating deaths and DALYs averted")
# Extract deaths and DALYs averted
extern_averted_dt = historical_dt %>%
filter(metric %in% c("deaths", "dalys")) %>%
# Burden in baseline minus burden in vaccine scenario...
lazy_dt() %>%
group_by(d_v_a_id, country, year, age, metric) %>%
mutate(value = value[scenario == "no_vaccine"] - value) %>%
ungroup() %>%
mutate(value = pmax(value, 0)) %>%
# Remove reference to baseline...
filter(scenario != "no_vaccine") %>%
select(-scenario) %>%
# Spread to wide format...
mutate(metric = paste1(metric, "averted")) %>%
pivot_wider(names_from = metric,
values_from = value) %>%
as.data.table()
# Save in table cache
save_table(extern_averted_dt, "extern_estimates")
# ---- Update coverage estimates using model outputs ----
message(" - Extracting vaccine coverage")
# Coverage data prior to appending external pathogen coverage
base_coverage_dt = table("coverage") %>%
filter(!d_v_a_id %in% unique(historical_dt$d_v_a_id))
# Extract vaccine coverage from external model outcomes
extern_coverage_dt = historical_dt %>%
# Reduce down to non-trival dose estimates...
filter(scenario == "vaccine",
metric %in% table("d_v_a_extern")$vaccine,
value > 0) %>%
# Divide doses through by regimen...
left_join(y = table("regimen"),
by = c("metric" = "vaccine")) %>%
mutate(fvps = value / schedule) %>%
# Append cohort and calculate coverage...
left_join(y = table("wpp_pop"),
by = c("country", "year", "age")) %>%
rename(cohort = pop) %>%
mutate(fvps = pmin(fvps, cohort * o$max_coverage),
coverage = fvps / cohort) %>%
# Tidy up...
select(all_names(base_coverage_dt)) %>%
arrange(d_v_a_id, country, year, age)
# Append external coverage to coverage table
base_coverage_dt %>%
rbind(extern_coverage_dt) %>%
arrange(d_v_a_id, country, year, age) %>%
save_table("coverage")
}
# ---------------------------------------------------------
# Determine if specific repo exists locally
# ---------------------------------------------------------
repo_exists = function(repo) {
# Path for the parent directory of this EPI50 repository
parent_path = str_remove(o$pth$code, "[a-z,A-Z,0-9]+/$")
# Path to the repo in question
repo_path = paste0(parent_path, repo)
# If repo exists, return path
if (dir.exists(repo_path))
return(repo_path)
# If it doesn't exist, return trivial
if (!dir.exists(repo_path))
return(NULL)
}