forked from balajisrinivas/Gender-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
148 lines (117 loc) · 4.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.utils import to_categorical, plot_model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import BatchNormalization, Conv2D, MaxPooling2D, Activation, Flatten, Dropout, Dense
from tensorflow.keras import backend as K
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
import random
import pandas
import opencv
import cv2
import os
import glob
import tkintr as tk
# initial parameters
epochs = 100
lr = 1e-3
batch_size = 64
img_dims = (96,96,3)
data = []
labels = []
# load image files from the dataset
image_files = [f for f in glob.glob(r'C:\Files\gender_dataset_face' + "/**/*", recursive=True) if not os.path.isdir(f)]
random.shuffle(image_files)
# converting images to arrays and labelling the categories
for img in image_files:
image = cv2.imread(img)
image = cv2.resize(image, (img_dims[0],img_dims[1]))
image = img_to_array(image)
data.append(image)
label = img.split(os.path.sep)[-2] # C:\Files\gender_dataset_face\woman\face_1162.jpg
if label == "woman":
label = 1
else:
label = 0
labels.append([label]) # [[1], [0], [0], ...]
# pre-processing
data = np.array(data, dtype="double float") / 255.0
labels = np.array(labels)
# split dataset for training and validation
(trainX, testX, trainY, testY) = train_test_split(data, labels, test_size=0.2,
random_state=42)
trainY = to_categorical(trainY, num_classes=2) # [[1, 0], [0, 1], [0, 1], ...]
testY = to_categorical(testY, num_classes=2)
# augmenting datset
aug = ImageDataGenerator(rotation_range=25, width_shift_range=0.1,
height_shift_range=0.1, shear_range=0.2, zoom_range=0.2,
horizontal_flip=True, fill_mode="nearest")
# define model
def build(width, height, depth, classes):
model = Sequential()
inputShape = (height, width, depth)
chanDim = -1
if K.image_data_format() == "channels_first": #Returns a string, either 'channels_first' or 'channels_last'
inputShape = (depth, height, width)
chanDim = 1
# The axis that should be normalized, after a Conv2D layer with data_format="channels_first",
# set axis=1 in BatchNormalization.
model.add(Conv2D(32, (3,3), padding="same", input_shape=inputShape))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(3,3)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3,3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(Conv2D(64, (3,3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3,3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(Conv2D(128, (3,3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(classes))
model.add(Activation("sigmoid"))
return model
# build model
model = build(width=img_dims[0], height=img_dims[1], depth=img_dims[2],
classes=2)
# compile the model
opt = Adam(lr=lr, decay=lr/epochs)
model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"])
# train the model
H = model.fit_generator(aug.flow(trainX, trainY, batch_size=batch_size),
validation_data=(testX,testY),
steps_per_epoch=len(trainX) // batch_size,
epochs=epochs, verbose=1)
# save the model to disk
model.save('gender_detection.model')
# plot training/validation loss/accuracy
plt.style.use("ggplot")
plt.figure()
N = epochs
plt.plot(np.arange(0,N), H.history["loss"], label="train_loss")
plt.plot(np.arange(0,N), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0,N), H.history["acc"], label="train_acc")
plt.plot(np.arange(0,N), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="upper right")
# save plot to disk
plt.savefig('plot.png')