forked from NVIDIA/gbm-bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metrics.py
85 lines (74 loc) · 3.66 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# BSD License
#
# Copyright (c) 2016-present, Miguel Gonzalez-Fierro. All rights reserved.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name Miguel Gonzalez-Fierro nor the names of its contributors may be used to
# endorse or promote products derived from this software without specific
# prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
import sklearn.metrics as sklm
from datasets import LearningTask
def get_metrics(data, pred):
if data.learning_task == LearningTask.REGRESSION:
return regression_metrics(data.y_test, pred)
if data.learning_task == LearningTask.CLASSIFICATION:
return classification_metrics(data.y_test, pred)
if data.learning_task == LearningTask.MULTICLASS_CLASSIFICATION:
return classification_metrics_multilabel(data.y_test, pred)
raise ValueError("No metrics defined for learning task: " + str(data.learning_task))
def evaluate_metrics(y_true, y_pred, metrics):
res = {}
for metric_name, metric in metrics.items():
res[metric_name] = float(metric(y_true, y_pred))
return res
def classification_metrics(y_true, y_prob, threshold=0.5):
y_pred = np.where(y_prob > threshold, 1, 0)
metrics = {
"Accuracy": sklm.accuracy_score,
"Log_Loss": lambda real, pred: sklm.log_loss(real, y_prob, eps=1e-5),
# yes, I'm using y_prob here!
"AUC": lambda real, pred: sklm.roc_auc_score(real, y_prob),
"Precision": sklm.precision_score,
"Recall": sklm.recall_score,
}
return evaluate_metrics(y_true, y_pred, metrics)
def classification_metrics_multilabel(y_true, y_pred):
metrics = {
"Accuracy": sklm.accuracy_score,
"Precision": lambda real, pred: sklm.precision_score(real, pred,
average="weighted"),
"Recall": lambda real, pred: sklm.recall_score(real, pred,
average="weighted"),
"F1": lambda real, pred: sklm.f1_score(real, pred,
average="weighted"),
}
return evaluate_metrics(y_true, y_pred, metrics)
def regression_metrics(y_true, y_pred):
metrics = {
"MeanAbsError": sklm.mean_absolute_error,
"MeanSquaredError": sklm.mean_squared_error,
"MedianAbsError": sklm.median_absolute_error,
}
return evaluate_metrics(y_true, y_pred, metrics)