-
Notifications
You must be signed in to change notification settings - Fork 230
/
test_script.py
78 lines (66 loc) · 2.72 KB
/
test_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import time
from wavenet_model import *
from audio_data import WavenetDataset
from wavenet_training import *
from model_logging import *
from scipy.io import wavfile
dtype = torch.FloatTensor
ltype = torch.LongTensor
use_cuda = torch.cuda.is_available()
if use_cuda:
print('use gpu')
dtype = torch.cuda.FloatTensor
ltype = torch.cuda.LongTensor
model = WaveNetModel(layers=8,
blocks=4,
dilation_channels=16,
residual_channels=16,
skip_channels=16,
output_length=8,
dtype=dtype)
#model = load_latest_model_from('snapshots')
#model = torch.load('snapshots/snapshot_2017-12-10_09-48-19')
data = WavenetDataset(dataset_file='train_samples/saber/dataset.npz',
item_length=model.receptive_field + model.output_length - 1,
target_length=model.output_length,
file_location='train_samples/saber',
test_stride=20)
# torch.save(model, 'untrained_model')
print('the dataset has ' + str(len(data)) + ' items')
print('model: ', model)
print('receptive field: ', model.receptive_field)
print('parameter count: ', model.parameter_count())
def generate_and_log_samples(step):
sample_length=4000
gen_model = load_latest_model_from('snapshots')
print("start generating...")
samples = generate_audio(gen_model,
length=sample_length,
temperatures=[0])
tf_samples = tf.convert_to_tensor(samples, dtype=tf.float32)
logger.audio_summary('temperature 0', tf_samples, step, sr=16000)
samples = generate_audio(gen_model,
length=sample_length,
temperatures=[0.5])
tf_samples = tf.convert_to_tensor(samples, dtype=tf.float32)
logger.audio_summary('temperature 0.5', tf_samples, step, sr=16000)
print("audio clips generated")
logger = TensorboardLogger(log_interval=200,
validation_interval=200,
generate_interval=500,
generate_function=generate_and_log_samples,
log_dir="logs")
trainer = WavenetTrainer(model=model,
dataset=data,
lr=0.0001,
weight_decay=0.1,
logger=logger,
snapshot_path='snapshots',
snapshot_name='saber_model',
snapshot_interval=500)
print('start training...')
tic = time.time()
trainer.train(batch_size=8,
epochs=20)
toc = time.time()
print('Training took {} seconds.'.format(toc - tic))