-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathMLP_policy.py
191 lines (158 loc) · 7.23 KB
/
MLP_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import abc
import itertools
from torch import nn
from torch.nn import functional as F
from torch import optim
import numpy as np
import torch
from torch import distributions
from cs285.infrastructure import pytorch_util as ptu
from cs285.infrastructure.utils import normalize
from cs285.policies.base_policy import BasePolicy
class MLPPolicy(BasePolicy, nn.Module, metaclass=abc.ABCMeta):
def __init__(self,
ac_dim,
ob_dim,
n_layers,
size,
discrete=False,
learning_rate=1e-4,
training=True,
nn_baseline=False,
**kwargs
):
super().__init__(**kwargs)
# init vars
self.ac_dim = ac_dim
self.ob_dim = ob_dim
self.n_layers = n_layers
self.discrete = discrete
self.size = size
self.learning_rate = learning_rate
self.training = training
self.nn_baseline = nn_baseline
if self.discrete:
self.logits_na = ptu.build_mlp(input_size=self.ob_dim,
output_size=self.ac_dim,
n_layers=self.n_layers,
size=self.size)
self.logits_na.to(ptu.device)
self.mean_net = None
self.logstd = None
self.optimizer = optim.Adam(self.logits_na.parameters(),
self.learning_rate)
else:
self.logits_na = None
self.mean_net = ptu.build_mlp(input_size=self.ob_dim,
output_size=self.ac_dim,
n_layers=self.n_layers, size=self.size)
self.logstd = nn.Parameter(
torch.zeros(self.ac_dim, dtype=torch.float32, device=ptu.device)
)
self.mean_net.to(ptu.device)
self.logstd.to(ptu.device)
self.optimizer = optim.Adam(
itertools.chain([self.logstd], self.mean_net.parameters()),
self.learning_rate
)
if nn_baseline:
self.baseline = ptu.build_mlp(
input_size=self.ob_dim,
output_size=1,
n_layers=self.n_layers,
size=self.size,
)
self.baseline.to(ptu.device)
self.baseline_optimizer = optim.Adam(
self.baseline.parameters(),
self.learning_rate,
)
else:
self.baseline = None
##################################
def save(self, filepath):
torch.save(self.state_dict(), filepath)
##################################
# query the policy with observation(s) to get selected action(s)
def get_action(self, obs: np.ndarray) -> np.ndarray:
# TODO: get this from hw1
if len(obs.shape) > 1:
observation = obs
else:
observation = obs[None]
# TODO return the action that the policy prescribes
return ptu.to_numpy(self.forward(ptu.from_numpy(observation)).sample())
# update/train this policy
def update(self, observations, actions, **kwargs):
raise NotImplementedError
# This function defines the forward pass of the network.
# You can return anything you want, but you should be able to differentiate
# through it. For example, you can return a torch.FloatTensor. You can also
# return more flexible objects, such as a
# `torch.distributions.Distribution` object. It's up to you!
def forward(self, observation: torch.FloatTensor):
# TODO: get this from hw1
if self.discrete:
return distributions.Categorical(logits=self.logits_na(observation))
# helpful: difference between multivariatenormal and normal wrt shapes:
# https://ericmjl.github.io/blog/2019/5/29/reasoning-about-shapes-and-probability-distributions/
return distributions.MultivariateNormal(self.mean_net(observation), scale_tril = torch.diag(self.logstd.exp()))
#####################################################
#####################################################
class MLPPolicyPG(MLPPolicy):
def __init__(self, ac_dim, ob_dim, n_layers, size, **kwargs):
super().__init__(ac_dim, ob_dim, n_layers, size, **kwargs)
self.baseline_loss = nn.MSELoss()
def update(self, observations, actions, advantages, q_values=None):
observations = ptu.from_numpy(observations)
actions = ptu.from_numpy(actions)
advantages = ptu.from_numpy(advantages)
# TODO: compute the loss that should be optimized when training with policy gradient
# HINT1: Recall that the expression that we want to MAXIMIZE
# is the expectation over collected trajectories of:
# sum_{t=0}^{T-1} [grad [log pi(a_t|s_t) * (Q_t - b_t)]]
# HINT2: you will want to use the `log_prob` method on the distribution returned
# by the `forward` method
# HINT3: don't forget that `optimizer.step()` MINIMIZES a loss
log_pi = self.forward(observations).log_prob(actions)
print(log_pi.shape)
loss = torch.neg(torch.mean(torch.mul(log_pi, advantages)))
# TODO: optimize `loss` using `self.optimizer`
# HINT: remember to `zero_grad` first
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if self.nn_baseline:
## TODO: normalize the q_values to have a mean of zero and a standard deviation of one
## HINT: there is a `normalize` function in `infrastructure.utils`
targets = normalize(q_values, np.mean(q_values), np.mean(q_values))
targets = ptu.from_numpy(targets)
## TODO: use the `forward` method of `self.baseline` to get baseline predictions
baseline_predictions = self.baseline.forward(observations).squeeze()
## avoid any subtle broadcasting bugs that can arise when dealing with arrays of shape
## [ N ] versus shape [ N x 1 ]
## HINT: you can use `squeeze` on torch tensors to remove dimensions of size 1
assert baseline_predictions.shape == targets.shape
# TODO: compute the loss that should be optimized for training the baseline MLP (`self.baseline`)
# HINT: use `F.mse_loss`
baseline_loss = self.baseline_loss(baseline_predictions, targets)
# TODO: optimize `baseline_loss` using `self.baseline_optimizer`
# HINT: remember to `zero_grad` first
self.baseline_optimizer.zero_grad()
baseline_loss.backward()
self.baseline_optimizer.step()
train_log = {
'Training Loss': ptu.to_numpy(loss),
}
return train_log
def run_baseline_prediction(self, obs):
"""
Helper function that converts `obs` to a tensor,
calls the forward method of the baseline MLP,
and returns a np array
Input: `obs`: np.ndarray of size [N, 1]
Output: np.ndarray of size [N]
"""
obs = ptu.from_numpy(obs)
predictions = self.baseline(obs)
return ptu.to_numpy(predictions)[:, 0]