-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_wrapper.py
150 lines (123 loc) · 4.94 KB
/
face_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# import modules
import tensorflow
from tensorflow import keras
import logger
import os
import time
import numpy as np
import json
import matplotlib.pyplot as plt
class FaceWrapper:
"""FaceWrapper model is responsible for interventing preprocessing and training steps for experiments
Drawback: Temporarily no k-fold supported
"""
def __init__(self):
# configs goes here
self.faceWidth = 128
self.faceHeight = 128
self.batchSize = 32
self.datasetDir = './faces'
self.saveDir = './models'
self.classes = []
# model name to produce log file
self.modelName = 'default'
# model
self.model = None
self.history = None
# we might want to override these function to intervent steps for researching
# steps of using these callback please refer to './train.py' for details
self._import_dataset = None
self._preprocess = None
self._build_model = None
self._train = None
self._predict = None
def importDataset(self):
if self._import_dataset:
return self._import_dataset(self)
# preprocess training data
train_datagen = keras.preprocessing.image.ImageDataGenerator(rescale=1./255, validation_split=1./3)
# split dataset
train_set = train_datagen.flow_from_directory(
self.datasetDir,
seed=10,
target_size=(self.faceHeight, self.faceWidth),
class_mode='categorical',
batch_size=self.batchSize,
subset="training",
)
test_set = train_datagen.flow_from_directory(
self.datasetDir,
seed=10,
target_size=(self.faceHeight, self.faceWidth),
class_mode='categorical',
batch_size=self.batchSize,
subset="validation",
)
return train_set, test_set
def preprocess(self, X):
if self._preprocess:
return self._preprocess(self, X)
return X
def buildModel(self):
if self._build_model:
return self._build_model(self)
model = keras.Sequential([
keras.layers.Flatten(input_shape=(self.faceHeight, self.faceWidth, 3)),
keras.layers.Dense(32, activation='relu'),
keras.layers.Dropout(0.2),
keras.layers.Dense(2, activation='softmax'),
])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
def runWorkFlow(self, epochs=20): # exec the whole workflow
train, test = self.importDataset()
train = self.preprocess(train)
test = self.preprocess(test)
self.model = self.buildModel()
# logger.debug(train, test)
self.train(train, test, epochs=epochs)
return self
def train(self, train_set, test_set, epochs=20):
if self._train:
self.history = self._train(self, train_set, test_set)
else:
self.history = self.model.fit(
train_set, # data to train, a format of (X, y)
steps_per_epoch=len(train_set), # The number of batch iterations before a training epoch is considered finished. Ignore if whole data is load, in our case, we need this in order to iterate over batches; hence make sure that generator can generate at least: steps_per_epoch * epochs batches
epochs=epochs, # number of epochs, i.e times that iteration of updating weights goes
validation_data=test_set, # validation
validation_steps=len(test_set)
)
return self
def predict(self, X):
if self._predict:
logger.debug("Call custom prediction")
return self._predict(self, X)
predictions = self.model.predict(np.array(X))
# logger.debug(predictions)
return predictions
def save(self, id):
directory = os.path.join(self.saveDir, id)
if not os.path.isdir(directory):
os.mkdir(directory)
# save model to file
model_dir = os.path.join(directory, id+'.h5')
self.model.save(model_dir)
# self meta data alongside model
meta_dir = os.path.join(directory, id+'.meta')
with open(meta_dir, 'w') as f:
print(json.dumps(self.classes), file=f)
print(self.history.history, file=f)
return self
def load(self, id):
directory = os.path.join(self.saveDir, id)
model_dir = os.path.join(directory, id + '.h5')
meta_dir = os.path.join(directory, id + '.meta')
self.model = keras.models.load_model(model_dir)
with open(meta_dir, 'r') as f:
classes = f.readline()
self.classes = json.loads(classes)
logger.debug("Loaded classes:", self.classes)
return self
if __name__=='__main__':
logger.debug('Tensorflow version:', tensorflow.__version__)