-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval_weak.py
30 lines (27 loc) · 1.27 KB
/
eval_weak.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import torch
from tqdm import tqdm
import torch.nn.functional as F
from metrics.dice_loss import dice_coeff
def eval_compcsd(model, loader, device, layer):
"""Evaluation without the densecrf with the dice coefficient"""
model.eval()
mask_type = torch.float32
n_val = len(loader) # the number of batch
tot = 0
tot_lv = 0
tot_myo = 0
tot_rv = 0
with tqdm(total=n_val, desc='Validation round', unit='batch', leave=False) as pbar:
for imgs, true_masks, _ in loader:
imgs = imgs.to(device=device, dtype=torch.float32)
true_masks = true_masks.to(device=device, dtype=mask_type)
with torch.no_grad():
rec, pre_seg, content, features, kernels, L_visuals, pred_heart = model(imgs, layer=layer)
pred = (pre_seg > 0.5).float()
tot += dice_coeff(pred[:, 0:3, :, :], true_masks[:, 0:3, :, :], device).item()
tot_lv += dice_coeff(pred[:, 0, :, :], true_masks[:, 0, :, :], device).item()
tot_myo += dice_coeff(pred[:, 1, :, :], true_masks[:, 1, :, :], device).item()
tot_rv += dice_coeff(pred[:, 2, :, :], true_masks[:, 2, :, :], device).item()
pbar.update()
model.train()
return tot / n_val, tot_lv / n_val, tot_myo / n_val, tot_rv / n_val