forked from jzwick/ghc2024-vectorization-workshop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathq5.py
55 lines (42 loc) · 1.6 KB
/
q5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""Unoptimized functions to be vectorized."""
import math
import time
import numpy as np
import pandas as pd
from util import print_time_results, time_funcs
# Q5: Write a vectorized function, vec_grade, which has the same arguments and return as slow_grade.
# Note that when evaluating multiple boolean conditions over a vector, bitwise operators must be used
# Example: indices_of_nums_bt_1_and_5 = (some_other_vector > 1) & (some_other_vector < 5)
def slow_grade(grades):
letter_grades = []
for grade in grades:
if grade >= 90:
letter_grades.append("A")
elif 80 <= grade < 90:
letter_grades.append("B")
elif 70 <= grade < 80:
letter_grades.append("C")
elif grade < 70:
letter_grades.append("F")
return np.array(letter_grades)
def vec_grade(grades):
pass # insert your code here
def random_grades(num_grades: int):
return np.random.randint(0, 100, size=num_grades)
def test_grades(num_grades: int = 1000):
print("\n\nQ5: Running test_grades...\n")
input = random_grades(num_grades)
output_slow = pd.DataFrame(slow_grade(input))
output_vec = vec_grade(input)
if output_vec is not None:
output_vec_df = pd.DataFrame(output_vec)
pd.testing.assert_frame_equal(output_slow, output_vec_df, check_dtype=False)
timings, _ = time_funcs(
[slow_grade, vec_grade],
[[input], [input]],
["slow_grade", "vec_grade"],
reps=20,
)
print_time_results(timings, num_grades)
else:
print(" vec_grade is not implemented")