-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
358 lines (287 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# call: python train.py --data /fastdata/rhesse/datasets/FunnyBirds/ --model resnet50 --checkpoint_dir /data/rhesse/FunnyBirds/checkpoints --checkpoint_prefix resnet50_default --pretrained
import argparse
import os
import random
import time
from enum import Enum
import torch
import torch.nn as nn
import torch.optim
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import StepLR
from datasets.funny_birds import FunnyBirds
from models.resnet import resnet50
from models.vgg import vgg16
from models.ViT.ViT_new import vit_base_patch16_224
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', metavar='DIR', required=True,
help='path to dataset (default: imagenet)')
parser.add_argument('--model', required=True,
choices=['resnet50', 'vgg16', 'vit_b_16'],
help='model architecture')
parser.add_argument('--checkpoint_dir', metavar='DIR', required=True, default=None,
help='path to checkpoints')
parser.add_argument('--checkpoint_prefix', type=str, required=True, default=None,
help='checkpoint prefix')
parser.add_argument('--epochs', default=120, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--step_size', default=60, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N',
help='mini-batch size (default: 64), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--pretrained_ckpt', type=str)
parser.add_argument('--multi_target', action='store_true',
help='use pre-trained model')
parser.add_argument('--seed', default=0, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=0, type=int,
help='GPU id to use.')
best_acc1 = 0
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
#cudnn.deterministic = True
#cudnn.benchmark = True
#warnings.warn('You have chosen to seed training. '
# 'This will turn on the CUDNN deterministic setting, '
# 'which can slow down your training considerably! '
# 'You may see unexpected behavior when restarting '
# 'from checkpoints.')
global best_acc1
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
# create model
if args.model == 'resnet50':
model = resnet50(pretrained=args.pretrained)
model.fc = torch.nn.Linear(2048, 50)
elif args.model == 'vgg16':
model = vgg16(pretrained=args.pretrained)
model.classifier[-1] = torch.nn.Linear(4096, 50)
elif args.model == 'vit_b_16':
model = vit_base_patch16_224(pretrained=args.pretrained)
model.head = torch.nn.Linear(768, 50)
else:
print('Model not implemented')
model = model.cuda(args.gpu)
# define loss function (criterion), optimizer, and learning rate scheduler
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
scheduler = StepLR(optimizer, step_size=args.step_size, gamma=0.1)
# Data loading code
transforms = None
train_dataset = FunnyBirds(args.data, 'train', transform = transforms)
test_dataset = FunnyBirds(args.data, 'test', transform = transforms)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=8)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=8)
for epoch in range(0, args.epochs):
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args)
# evaluate on validation set
acc1 = validate(test_loader, model, criterion, args)
scheduler.step()
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
save_checkpoint({
'epoch': epoch + 1,
'model': args.model,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer' : optimizer.state_dict(),
'scheduler' : scheduler.state_dict()
}, is_best, args)
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, samples in enumerate(train_loader):
images = samples['image']
target = samples['class_idx']
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
if torch.cuda.is_available():
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
if not args.multi_target:
loss = criterion(output, target)
else:
B,_,_,_ = images.shape
params = samples['params']
loss = 0.
for b in range(B):
params_single = train_loader.dataset.get_params_for_single(params, idx=b)
part_idxs = train_loader.dataset.single_params_to_part_idxs(params_single)
target_classes = list(range(len(train_loader.dataset.classes)))
for part in part_idxs.keys():
part_idx = part_idxs[part]
if part_idx == -1:
continue
for class_idx in range(len(train_loader.dataset.classes)):
class_spec = train_loader.dataset.classes[class_idx]
if part_idx != class_spec['parts'][part]:
try:
target_classes.remove(class_idx)
except ValueError:
do_nothin = 'do_nothing'
for target_class in target_classes:
target_class_tensor = torch.tensor([target_class]).cuda(args.gpu, non_blocking=True)
loss += criterion(output[b].unsqueeze(0), target_class_tensor) * 1/len(target_classes) * 1/B
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i + 1)
def validate(val_loader, model, criterion, args):
def run_validate(loader, base_progress=0):
with torch.no_grad():
end = time.time()
for i, samples in enumerate(loader):
images = samples['image']
target = samples['class_idx']
i = base_progress + i
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
if torch.cuda.is_available():
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i + 1)
batch_time = AverageMeter('Time', ':6.3f', Summary.NONE)
losses = AverageMeter('Loss', ':.4e', Summary.NONE)
top1 = AverageMeter('Acc@1', ':6.2f', Summary.AVERAGE)
top5 = AverageMeter('Acc@5', ':6.2f', Summary.AVERAGE)
progress = ProgressMeter(
len(val_loader) + (False and (len(val_loader.sampler) * -1 < len(val_loader.dataset))),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
run_validate(val_loader)
progress.display_summary()
return top1.avg
def save_checkpoint(state, is_best, args, filename='checkpoint.pth.tar'):
filename_checkpoint = os.path.join(args.checkpoint_dir, args.checkpoint_prefix + '_checkpoint.pth.tar')
torch.save(state, filename_checkpoint)
if is_best:
filename_checkpoint_best = os.path.join(args.checkpoint_dir, args.checkpoint_prefix + '_checkpoint_best.pth.tar')
torch.save(state, filename_checkpoint_best)
class Summary(Enum):
NONE = 0
AVERAGE = 1
SUM = 2
COUNT = 3
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f', summary_type=Summary.AVERAGE):
self.name = name
self.fmt = fmt
self.summary_type = summary_type
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def summary(self):
fmtstr = ''
if self.summary_type is Summary.NONE:
fmtstr = ''
elif self.summary_type is Summary.AVERAGE:
fmtstr = '{name} {avg:.3f}'
elif self.summary_type is Summary.SUM:
fmtstr = '{name} {sum:.3f}'
elif self.summary_type is Summary.COUNT:
fmtstr = '{name} {count:.3f}'
else:
raise ValueError('invalid summary type %r' % self.summary_type)
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def display_summary(self):
entries = [" *"]
entries += [meter.summary() for meter in self.meters]
print(' '.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()