-
Notifications
You must be signed in to change notification settings - Fork 607
/
Copy pathkys.py
148 lines (121 loc) · 7.98 KB
/
kys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch.optim as optim
import os
from ltr.dataset import Lasot, Got10k, TrackingNet
from ltr.data import processing, sampler, LTRLoader
import ltr.models.tracking.kysnet as kysnet_models
import ltr.models.loss as ltr_losses
from ltr import actors
from ltr.trainers import LTRTrainer
from ltr.models.kys.utils import DiMPScoreJittering
import ltr.data.transforms as tfm
import ltr.admin.loading as network_loading
def run(settings):
settings.move_data_to_gpu = False
settings.description = ''
settings.batch_size = 10
settings.test_sequence_length = 50
settings.num_workers = 8
settings.print_interval = 1
settings.normalize_mean = [0.485, 0.456, 0.406]
settings.normalize_std = [0.229, 0.224, 0.225]
settings.search_area_factor = 5.0
settings.output_sigma_factor = 1/4
settings.target_filter_sz = 4
settings.feature_sz = 18
settings.output_sz = settings.feature_sz * 16
settings.center_jitter_param = {'train_mode': 'uniform', 'train_factor': 3.0, 'train_limit_motion': False,
'test_mode': 'uniform', 'test_factor': 4.5, 'test_limit_motion': True}
settings.scale_jitter_param = {'train_factor': 0.25, 'test_factor': 0.3}
settings.hinge_threshold = 0.05
settings.print_stats = ['Loss/total', 'Loss/raw/test_clf', 'Loss/raw/test_clf_acc', 'Loss/raw/dimp_clf_acc',
'Loss/raw/is_target', 'Loss/raw/is_target_after_prop',
'Loss/raw/test_seq_acc',
'Loss/raw/dimp_seq_acc']
lasot_train = Lasot(settings.env.lasot_dir, split='train')
got10k_train = Got10k(settings.env.got10k_dir, split='vottrain')
trackingnet_train = TrackingNet(settings.env.trackingnet_dir, set_ids=[0, 1, 2, 3, 4])
# Validation datasets
got10k_val = Got10k(settings.env.got10k_dir, split='votval')
# Data transform
transform_joint = tfm.Transform(tfm.ToGrayscale(probability=0.05))
transform_train = tfm.Transform(tfm.ToTensorAndJitter(0.2),
tfm.Normalize(mean=settings.normalize_mean, std=settings.normalize_std))
transform_val = tfm.Transform(tfm.ToTensor(),
tfm.Normalize(mean=settings.normalize_mean, std=settings.normalize_std))
# The tracking pairs processing module
output_sigma = settings.output_sigma_factor / settings.search_area_factor
proposal_params = None
label_params = {'feature_sz': settings.feature_sz, 'sigma_factor': output_sigma,
'kernel_sz': settings.target_filter_sz,
'end_pad_if_even': True}
data_processing_train = processing.KYSProcessing(search_area_factor=settings.search_area_factor,
output_sz=settings.output_sz,
center_jitter_param=settings.center_jitter_param,
scale_jitter_param=settings.scale_jitter_param,
proposal_params=proposal_params,
label_function_params=label_params,
transform=transform_train,
joint_transform=transform_joint,
min_crop_inside_ratio=0.1)
data_processing_val = processing.KYSProcessing(search_area_factor=settings.search_area_factor,
output_sz=settings.output_sz,
center_jitter_param=settings.center_jitter_param,
scale_jitter_param=settings.scale_jitter_param,
proposal_params=proposal_params,
label_function_params=label_params,
transform=transform_val,
joint_transform=transform_joint,
min_crop_inside_ratio=0.1)
# Train sampler and loader
sequence_sample_info = {'num_train_frames': 3, 'num_test_frames': settings.test_sequence_length,
'max_train_gap': 30, 'allow_missing_target': True, 'min_fraction_valid_frames': 0.5,
'mode': 'Sequence'}
dataset_train = sampler.KYSSampler([got10k_train, trackingnet_train, lasot_train],
[0.3, 0.3, 0.25],
samples_per_epoch=settings.batch_size * 150,
sequence_sample_info=sequence_sample_info,
processing=data_processing_train,
sample_occluded_sequences=True)
loader_train = LTRLoader('train', dataset_train, training=True, batch_size=settings.batch_size,
num_workers=settings.num_workers,
shuffle=True, drop_last=True, stack_dim=1)
# Validation samplers and loaders
dataset_val = sampler.KYSSampler([got10k_val], [1], samples_per_epoch=1000,
sequence_sample_info=sequence_sample_info, processing=data_processing_val,
sample_occluded_sequences=True)
loader_val = LTRLoader('val', dataset_val, training=False, batch_size=settings.batch_size,
num_workers=settings.num_workers,
shuffle=False, drop_last=True, epoch_interval=5, stack_dim=1)
# load base dimp
dimp_weights_path = os.path.join(settings.env.pretrained_networks, 'dimp50.pth')
base_net, _ = network_loading.load_network(checkpoint=dimp_weights_path)
net = kysnet_models.kysnet_res50(optim_iter=3, cv_kernel_size=3, cv_max_displacement=9,
cv_stride=1, init_gauss_sigma=output_sigma * settings.feature_sz,
train_feature_extractor=False, train_iounet=False, detach_length=0, state_dim=8,
representation_predictor_dims=(16,), conf_measure='entropy',
dimp_thresh=0.05)
# Move pre-trained dimp weights
net.backbone_feature_extractor.load_state_dict(base_net.feature_extractor.state_dict())
net.dimp_classifier.load_state_dict(base_net.classifier.state_dict())
net.bb_regressor.load_state_dict(base_net.bb_regressor.state_dict())
# To be safe
for p in net.backbone_feature_extractor.parameters():
p.requires_grad_(False)
for p in net.dimp_classifier.parameters():
p.requires_grad_(False)
for p in net.bb_regressor.parameters():
p.requires_grad_(False)
objective = {'test_clf': ltr_losses.LBHingev2(threshold=settings.hinge_threshold, return_per_sequence=False),
'dimp_clf': ltr_losses.LBHingev2(threshold=settings.hinge_threshold, return_per_sequence=False),
'is_target': ltr_losses.IsTargetCellLoss(return_per_sequence=False),
'clf_acc': ltr_losses.TrackingClassificationAccuracy(threshold=0.25)}
loss_weight = {'test_clf': 1.0*500, 'test_clf_orig': 50, 'is_target': 0.1*500, 'is_target_after_prop': 0.1*500}
dimp_jitter_fn = DiMPScoreJittering(distractor_ratio=0.1, p_distractor=0.3, max_distractor_enhance_factor=1.3,
min_distractor_enhance_factor=0.8)
actor = actors.KYSActor(net=net, objective=objective, loss_weight=loss_weight,
dimp_jitter_fn=dimp_jitter_fn)
optimizer = optim.Adam([{'params': actor.net.predictor.parameters(), 'lr': 1e-2}],
lr=1e-2)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=15, gamma=0.2)
trainer = LTRTrainer(actor, [loader_train, loader_val], optimizer, settings, lr_scheduler)
trainer.train(40, load_latest=True, fail_safe=True)