-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset_load.py
125 lines (102 loc) · 4.2 KB
/
dataset_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
from torchvision import transforms, datasets
from torch.utils.data import ConcatDataset, Subset, DataLoader
import numpy as np
import matplotlib.pyplot as plt
"""# Dataset and dataloader"""
# Hyperparameters and paths
num_epochs = 500
batch_size = 64
warmup_epochs = 75
best_psnr = 0
beta = 1.0
checkpoint_path = "/working/" #update it with your checkpoints path
# Paths to dataset directories
PATHS = [
"imagenet100/train.X1",
"imagenet100/train.X2",
"imagenet100/train.X3",
"imagenet100/train.X4"
]
# Transformation pipeline for training
train_transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.RandomCrop(64),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Transformation pipeline for validation and testing
val_test_transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Transformation pipeline for visualisation of validation and testing
visual_val_test_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Load datasets from multiple folders and combine them
train_val_test_datasets = [datasets.ImageFolder(path) for path in PATHS]
train_val_test_dataset = ConcatDataset(train_val_test_datasets)
def split_dataset(dataset, sizes):
"""Split the dataset into specified sizes."""
indices = np.arange(len(dataset))
np.random.shuffle(indices)
split_indices = []
start_idx = 0
for size in sizes:
split_indices.append(indices[start_idx:start_idx + size])
start_idx += size
return split_indices
# Specify sizes for the splits
split_sizes = [15000, 2000, 1000, 1000]
split_indices = split_dataset(train_val_test_dataset, split_sizes)
# Create subsets for the splits
train_dataset = Subset(train_val_test_dataset, split_indices[0])
val_dataset = Subset(train_val_test_dataset, split_indices[1])
test_dataset = Subset(train_val_test_dataset, split_indices[2])
visual_dataset = Subset(train_val_test_dataset, split_indices[3])
# Custom dataset class to apply different transforms
class TransformDataset(torch.utils.data.Dataset):
def __init__(self, subset, transform):
self.subset = subset
self.transform = transform
def __getitem__(self, index):
x, y = self.subset[index]
return self.transform(x), y
def __len__(self):
return len(self.subset)
# Apply appropriate transforms to the datasets
train_dataset = TransformDataset(train_dataset, train_transform)
val_dataset = TransformDataset(val_dataset, val_test_transform)
test_dataset = TransformDataset(test_dataset, val_test_transform)
visual_dataset = TransformDataset(visual_dataset, visual_val_test_transform)
# Create DataLoaders for all datasets
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True, drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True, drop_last=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True, drop_last=True)
visual_loader = DataLoader(visual_dataset, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True, drop_last=True)
def show_images(dataset, indices):
"""Visualize images from the dataset at specified indices."""
plt.figure(figsize=(15, 15))
# Display images
for i, idx in enumerate(indices):
image, label = dataset[idx]
image = image.permute(1, 2, 0)
image = image.numpy()
# Denormalize the image for proper visualization
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = std * image + mean
image = np.clip(image, 0, 1)
plt.subplot(5, 10, i + 1)
plt.imshow(image)
plt.axis('off')
plt.title(f'Label: {label}')
plt.show()
if __name__ == "__main__":
show_images(train_dataset, indices=range(50))