-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
331 lines (274 loc) · 13.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
# pyformat: disable
import functools
import os
import shutil
from typing import Callable
import json
import jax
import jax.numpy as jn
import numpy as np
import tensorflow as tf # For data augmentation.
import tensorflow_datasets as tfds
from absl import app, flags
import objax
from objax.jaxboard import SummaryWriter, Summary
from objax.util import EasyDict
from objax.zoo import convnet, wide_resnet
from dataset import DataSet
FLAGS = flags.FLAGS
def augment(x, shift: int, mirror=True):
"""
Augmentation function used in training the model.
"""
y = x['image']
if mirror:
y = tf.image.random_flip_left_right(y)
y = tf.pad(y, [[shift] * 2, [shift] * 2, [0] * 2], mode='REFLECT')
y = tf.image.random_crop(y, tf.shape(x['image']))
return dict(image=y, label=x['label'])
class TrainLoop(objax.Module):
"""
Training loop for general machine learning models.
Based on the training loop from the objax CIFAR10 example code.
"""
predict: Callable
train_op: Callable
def __init__(self, nclass: int, **kwargs):
self.nclass = nclass
self.params = EasyDict(kwargs)
def train_step(self, summary: Summary, data: dict, progress: np.ndarray):
kv = self.train_op(progress, data['image'].numpy(), data['label'].numpy())
for k, v in kv.items():
if jn.isnan(v):
raise ValueError('NaN, try reducing learning rate', k)
if summary is not None:
summary.scalar(k, float(v))
def train(self, num_train_epochs: int, train_size: int, train: DataSet, test: DataSet, logdir: str, save_steps=100, patience=None):
"""
Completely standard training. Nothing interesting to see here.
"""
checkpoint = objax.io.Checkpoint(logdir, keep_ckpts=20, makedir=True)
start_epoch, last_ckpt = checkpoint.restore(self.vars())
train_iter = iter(train)
progress = np.zeros(jax.local_device_count(), 'f') # for multi-GPU
best_acc = 0
best_acc_epoch = -1
with SummaryWriter(os.path.join(logdir, 'tb')) as tensorboard:
for epoch in range(start_epoch, num_train_epochs):
# Train
summary = Summary()
loop = range(0, train_size, self.params.batch)
for step in loop:
progress[:] = (step + (epoch * train_size)) / (num_train_epochs * train_size)
self.train_step(summary, next(train_iter), progress)
# Eval
accuracy, total = 0, 0
if epoch%FLAGS.eval_steps == 0 and test is not None:
for data in test:
total += data['image'].shape[0]
preds = np.argmax(self.predict(data['image'].numpy()), axis=1)
accuracy += (preds == data['label'].numpy()).sum()
accuracy /= total
summary.scalar('eval/accuracy', 100 * accuracy)
tensorboard.write(summary, step=(epoch + 1) * train_size)
print('Epoch %04d Loss %.2f Accuracy %.2f' % (epoch + 1, summary['losses/xe'](),
summary['eval/accuracy']()))
if summary['eval/accuracy']() > best_acc:
best_acc = summary['eval/accuracy']()
best_acc_epoch = epoch
elif patience is not None and epoch > best_acc_epoch + patience:
print("early stopping!")
checkpoint.save(self.vars(), epoch + 1)
return
else:
print('Epoch %04d Loss %.2f Accuracy --' % (epoch + 1, summary['losses/xe']()))
if epoch%save_steps == save_steps-1:
checkpoint.save(self.vars(), epoch + 1)
# We inherit from the training loop and define predict and train_op.
class MemModule(TrainLoop):
def __init__(self, model: Callable, nclass: int, mnist=False, **kwargs):
"""
Completely standard training. Nothing interesting to see here.
"""
super().__init__(nclass, **kwargs)
self.model = model(1 if mnist else 3, nclass)
self.opt = objax.optimizer.Momentum(self.model.vars())
self.model_ema = objax.optimizer.ExponentialMovingAverageModule(self.model, momentum=0.999, debias=True)
@objax.Function.with_vars(self.model.vars())
def loss(x, label):
logit = self.model(x, training=True)
loss_wd = 0.5 * sum((v.value ** 2).sum() for k, v in self.model.vars().items() if k.endswith('.w'))
loss_xe = objax.functional.loss.cross_entropy_logits(logit, label).mean()
return loss_xe + loss_wd * self.params.weight_decay, {'losses/xe': loss_xe, 'losses/wd': loss_wd}
gv = objax.GradValues(loss, self.model.vars())
self.gv = gv
@objax.Function.with_vars(self.vars())
def train_op(progress, x, y):
g, v = gv(x, y)
lr = self.params.lr * jn.cos(progress * (7 * jn.pi) / (2 * 8))
lr = lr * jn.clip(progress*100,0,1)
self.opt(lr, g)
self.model_ema.update_ema()
return {'monitors/lr': lr, **v[1]}
self.predict = objax.Jit(objax.nn.Sequential([objax.ForceArgs(self.model_ema, training=False)]))
self.train_op = objax.Jit(train_op)
def network(arch: str):
if arch == 'cnn32-3-max':
return functools.partial(convnet.ConvNet, scales=3, filters=32, filters_max=1024,
pooling=objax.functional.max_pool_2d)
elif arch == 'cnn32-3-mean':
return functools.partial(convnet.ConvNet, scales=3, filters=32, filters_max=1024,
pooling=objax.functional.average_pool_2d)
elif arch == 'cnn64-3-max':
return functools.partial(convnet.ConvNet, scales=3, filters=64, filters_max=1024,
pooling=objax.functional.max_pool_2d)
elif arch == 'cnn64-3-mean':
return functools.partial(convnet.ConvNet, scales=3, filters=64, filters_max=1024,
pooling=objax.functional.average_pool_2d)
elif arch == 'wrn28-1':
return functools.partial(wide_resnet.WideResNet, depth=28, width=1)
elif arch == 'wrn28-2':
return functools.partial(wide_resnet.WideResNet, depth=28, width=2)
elif arch == 'wrn28-10':
return functools.partial(wide_resnet.WideResNet, depth=28, width=10)
raise ValueError('Architecture not recognized', arch)
def get_data(seed):
"""
This is the function to generate subsets of the data for training models.
First, we get the training dataset either from the numpy cache
or otherwise we load it from tensorflow datasets.
Then, we compute the subset. This works in one of two ways.
1. If we have a seed, then we just randomly choose examples based on
a prng with that seed, keeping FLAGS.pkeep fraction of the data.
2. Otherwise, if we have an experiment ID, then we do something fancier.
If we run each experiment independently then even after a lot of trials
there will still probably be some examples that were always included
or always excluded. So instead, with experiment IDs, we guarantee that
after FLAGS.num_experiments are done, each example is seen exactly half
of the time in train, and half of the time not in train.
"""
DATA_DIR = os.path.join(os.environ['HOME'], 'TFDS')
if os.path.exists(os.path.join(FLAGS.logdir, "x_train.npy")):
inputs = np.load(os.path.join(FLAGS.logdir, "x_train.npy"))
labels = np.load(os.path.join(FLAGS.logdir, "y_train.npy"))
else:
print("First time, creating dataset")
data = tfds.as_numpy(tfds.load(name=FLAGS.dataset, batch_size=-1, data_dir=DATA_DIR))
inputs = data['train']['image']
labels = data['train']['label']
inputs = (inputs/127.5)-1
np.save(os.path.join(FLAGS.logdir, "x_train.npy"),inputs)
np.save(os.path.join(FLAGS.logdir, "y_train.npy"),labels)
nclass = np.max(labels)+1
np.random.seed(seed)
if FLAGS.num_experiments is not None:
np.random.seed(0)
keep = np.random.uniform(0,1,size=(FLAGS.num_experiments, FLAGS.dataset_size))
order = keep.argsort(0)
keep = order < int(FLAGS.pkeep * FLAGS.num_experiments)
keep = np.array(keep[FLAGS.expid], dtype=bool)
else:
keep = np.random.uniform(0, 1, size=FLAGS.dataset_size) <= FLAGS.pkeep
if FLAGS.only_subset is not None:
keep[FLAGS.only_subset:] = 0
xs = inputs[keep]
ys = labels[keep]
if FLAGS.augment == 'weak':
aug = lambda x: augment(x, 4)
elif FLAGS.augment == 'mirror':
aug = lambda x: augment(x, 0)
elif FLAGS.augment == 'none':
aug = lambda x: augment(x, 0, mirror=False)
else:
raise
train = DataSet.from_arrays(xs, ys,
augment_fn=aug)
test = DataSet.from_tfds(tfds.load(name=FLAGS.dataset, split='test', data_dir=DATA_DIR), xs.shape[1:])
train = train.cache().shuffle(8192).repeat().parse().augment().batch(FLAGS.batch)
train = train.nchw().one_hot(nclass).prefetch(16)
test = test.cache().parse().batch(FLAGS.batch).nchw().prefetch(16)
return train, test, xs, ys, keep, nclass
def main(argv):
del argv
tf.config.experimental.set_visible_devices([], "GPU")
seed = FLAGS.seed
if seed is None:
import time
seed = np.random.randint(0, 1000000000)
seed ^= int(time.time())
args = EasyDict(arch=FLAGS.arch,
lr=FLAGS.lr,
batch=FLAGS.batch,
weight_decay=FLAGS.weight_decay,
augment=FLAGS.augment,
seed=seed)
if FLAGS.tunename:
logdir = '_'.join(sorted('%s=%s' % k for k in args.items()))
elif FLAGS.expid is not None:
logdir = "experiment-%d_%d"%(FLAGS.expid,FLAGS.num_experiments)
else:
logdir = "experiment-"+str(seed)
logdir = os.path.join(FLAGS.logdir, logdir)
if os.path.exists(os.path.join(logdir, "ckpt", "%010d.npz"%FLAGS.epochs)):
print(f"run {FLAGS.expid} already completed.")
return
else:
if os.path.exists(logdir):
print(f"deleting run {FLAGS.expid} that did not complete.")
shutil.rmtree(logdir)
print(f"starting run {FLAGS.expid}.")
if not os.path.exists(logdir):
os.makedirs(logdir)
train, test, xs, ys, keep, nclass = get_data(seed)
# Define the network and train_it
tm = MemModule(network(FLAGS.arch), nclass=nclass,
mnist=FLAGS.dataset == 'mnist',
epochs=FLAGS.epochs,
expid=FLAGS.expid,
num_experiments=FLAGS.num_experiments,
pkeep=FLAGS.pkeep,
save_steps=FLAGS.save_steps,
only_subset=FLAGS.only_subset,
**args
)
r = {}
r.update(tm.params)
open(os.path.join(logdir,'hparams.json'),"w").write(json.dumps(tm.params))
np.save(os.path.join(logdir,'keep.npy'), keep)
tm.train(FLAGS.epochs, len(xs), train, test, logdir,
save_steps=FLAGS.save_steps, patience=FLAGS.patience)
if __name__ == '__main__':
flags.DEFINE_string('arch', 'cnn32-3-mean', 'Model architecture.')
flags.DEFINE_float('lr', 0.1, 'Learning rate.')
flags.DEFINE_string('dataset', 'cifar10', 'Dataset.')
flags.DEFINE_float('weight_decay', 0.0005, 'Weight decay ratio.')
flags.DEFINE_integer('batch', 256, 'Batch size')
flags.DEFINE_integer('epochs', 501, 'Training duration in number of epochs.')
flags.DEFINE_string('logdir', 'experiments', 'Directory where to save checkpoints and tensorboard data.')
flags.DEFINE_integer('seed', None, 'Training seed.')
flags.DEFINE_float('pkeep', .5, 'Probability to keep examples.')
flags.DEFINE_integer('expid', None, 'Experiment ID')
flags.DEFINE_integer('num_experiments', None, 'Number of experiments')
flags.DEFINE_string('augment', 'weak', 'Strong or weak augmentation')
flags.DEFINE_integer('only_subset', None, 'Only train on a subset of images.')
flags.DEFINE_integer('dataset_size', 50000, 'number of examples to keep.')
flags.DEFINE_integer('eval_steps', 1, 'how often to get eval accuracy.')
flags.DEFINE_integer('abort_after_epoch', None, 'stop trainin early at an epoch')
flags.DEFINE_integer('save_steps', 10, 'how often to get save model.')
flags.DEFINE_integer('patience', None, 'Early stopping after this many epochs without progress')
flags.DEFINE_bool('tunename', False, 'Use tune name?')
app.run(main)