-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-cauchy.tex
1153 lines (927 loc) · 45.5 KB
/
chap-cauchy.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Cauchy Filters on Reloids}
In this chapter I consider \emph{low filters} on reloids, generalizing
Cauchy filters on uniform spaces. Using low filters, I define Cauchy-complete
reloids, generalizing complete uniform spaces.
\fxnote{I forgot to note that Cauchy spaces induce topological (or convergence) spaces.}
\section{Preface}
Replace {\tt \textbackslash langle \dots \textbackslash rangle} with {\tt \textbackslash supfun\{\dots\}} in \LaTeX{}.
This is a preliminary partial draft.
To understand this article you need first look into my book \cite{volume-1}.
\url{http://math.stackexchange.com/questions/401989/what-are-interesting-properties-of-totally-bounded-uniform-spaces}
\url{http://ncatlab.org/nlab/show/proximity+space\#uniform\_spaces} for a proof
sketch that proximities correspond to totally bounded uniformities.
\section{Low spaces}
\fxwarning{Analyze \url{http://link.springer.com/article/10.1007/s10474-011-0136-9} (``A note on Cauchy spaces''),
\url{http://link.springer.com/article/10.1007/BF00873992} (``Filter spaces''). It also contains references to some useful results,
including (``On continuity structures and spaces of mappings'' freely available at \url{https://eudml.org/doc/16128}) that the category $\mathrm{FIL}$ of filter spaces is isomorphic to
the category of filter merotopic spaces (copy its definition).}
\begin{defn}
A \emph{lower set}\footnote{Remember that our orders on filters is the
reverse to set theoretic inclusion. It could be called an \emph{upper} set
in other sources.} of filters on $U$ (a set) is a set $\mathscr{C}$
of filters on $U$, such that if $\mathcal{G} \sqsubseteq
\mathcal{F}$ and $\mathcal{F} \in \mathscr{C}$ then $\mathcal{G} \in
\mathscr{C}$.
\end{defn}
\begin{rem}
Note that we are particularly interested in nonempty (=~containing the improper filter) lower sets of filters.
This does not match the traditional theory of Cauchy spaces (see below) which are traditionally defined as not containing empty set.
Allowing them to contain empty set has some advantages:
\begin{itemize}
\item Meet of any lower filters is a lower filter.
\item Some formulas become a little simpler.
\end{itemize}
\end{rem}
\begin{defn}
I call \emph{low space} a set together with a nonempty lower set of
filters on this set.
Elements of a (given) low space are called \emph{Cauchy filters}.
\end{defn}
\begin{defn}
$\GR \left( U , \mathscr{C} \right) = \mathscr{C}$; $\Ob \left(
U , \mathscr{C} \right) = U$.
$\GR (U, \mathscr{C})$ is read as \emph{graph} of space $(U, \mathscr{C})$.
I denote $\Low(U)$ the set of graphs of low spaces on the set~$U$.
Similarly I will denote its subsets $\mathbf{ASJ}(U)$, $\mathbf{CASJ}(U)$, $\mathbf{Cau}(U)$, $\mathbf{CCau}(U)$ (see below).
\end{defn}
\fxnote{Should use ``space structure'' instead of ``graph of space'', to match customary terminology.}
\begin{defn}
Introduce an order on graphs of low spaces and on low spaces:
$\mathscr{C}\sqsubseteq\mathscr{D}\Leftrightarrow\mathscr{C}\subseteq\mathscr{D}$ and
$\left( U , \mathscr{C} \right) \sqsubseteq \left( U , \mathscr{D} \right) \Leftrightarrow \mathscr{C} \sqsubseteq \mathscr{D}$.
\end{defn}
\begin{obvious}
Every set of low spaces on some set is partially ordered.
\end{obvious}
\section{Almost sub-join-semilattices}
\begin{defn}
For a join-semilattice~$\mathfrak{A}$, a \emph{almost sub-join-semilattice} is such a set~$S\in\subsets\mathfrak{A}$, that
if $\mathcal{F},\mathcal{G}\in S$ and $\mathcal{F} \nasymp \mathcal{G}$ then $\mathcal{F} \sqcup \mathcal{G}\in S$.
\end{defn}
\begin{defn}
For a complete lattice~$\mathfrak{A}$, a \emph{completely almost sub-join-semilattice} is such a set~$S\in\subsets\mathfrak{A}$, that
if $\bigsqcap T \neq \bot^{\mathscr{F}(X)}$ then $\bigsqcup T\in S$ for every $T\in\subsets S$.
\end{defn}
\begin{obvious}
Every completely almost sub-join-semilattice is a almost sub-join-semilattice.
\end{obvious}
\section{Cauchy spaces}
\begin{defn}
A \emph{reflexive} low space is a low space $( U , \mathscr{C})$ such that
$\forall x \in U : \uparrow^U \{ x \} \in \mathscr{C}$.
\end{defn}
\begin{defn}
The \emph{identity} low space~$1^{\Low(U)}$ on a set~$U$ is the low space with graph $\setcond{\uparrow^U \{x\}}{x\in U}$.
\end{defn}
\begin{obvious}\label{cs-refl-by-id}
A low space~$f$ is reflexive iff $f\sqsupseteq 1^{\Low(\Ob f)}$.
\end{obvious}
\begin{defn}
\emph{An almost sub-join space} is a low space whose graph is an almost sub-join-semilattice.
I will denote such spaces as $\mathbf{ASJ}$.
\end{defn}
\begin{defn}
\emph{A completely almost sub-join space} is a low space whose graph is a completely almost sub-join-semilattice.
I will denote such spaces as $\mathbf{CASJ}$.
\end{defn}
\begin{defn}
A \emph{precauchy space} (aka \emph{filter space}) is a reflexive low space.
I will denote such spaces as $\mathbf{preCau}$.
\end{defn}
\begin{defn}
A \emph{Cauchy space} is a precauchy space which is also an almost sub-join space.
I will denote such spaces as $\mathbf{Cau}$.
\end{defn}
\begin{defn}
A \emph{completely Cauchy space} is a precauchy space which is also a completely almost sub-join space.
I will denote such spaces as $\mathbf{CCau}$.
\end{defn}
\begin{obvious}
Every completely Cauchy space is a Cauchy space.
\end{obvious}
\begin{prop}
$a\sqcup^{
\setcond{\mathcal{X} \in \mathscr{C} }{\mathcal{X} \sqsupseteq \mathcal{F}}
} b = a\sqcup b$ for
$a,b \in \setcond{\mathcal{X} \in \mathscr{C} }{\mathcal{X} \sqsupseteq \mathcal{F}}$,
provided that $\mathcal{F}$ is a proper fixed Cauchy filter on an almost sub-join space.
\end{prop}
\begin{proof}
$\mathcal{F}$ is proper. So
we have $a \sqcap b \sqsupseteq \mathcal{F} \neq \bot^{\mathscr{F} (X)}$. Thus $a\sqcup b$ is a Cauchy
filter and so $a\sqcup b \in \setcond{\mathcal{X} \in \mathscr{C} }{\mathcal{X} \sqsupseteq \mathcal{F}}$.
\end{proof}
\begin{prop}
$\bigsqcup^{
\setcond{\mathcal{X} \in \mathscr{C} }{\mathcal{X} \sqsupseteq \mathcal{F}}
} S = \bigsqcup S$ for nonempty
$S \in \subsets \setcond{\mathcal{X} \in \mathscr{C} }{\mathcal{X} \sqsupseteq \mathcal{F}}$,
provided that $\mathcal{F}$ is a proper fixed Cauchy filter on a completely almost sub-join space.
\end{prop}
\begin{proof}
$\mathcal{F}$ is proper. So for every nonempty $S \in \subsets
\setcond{\mathcal{X} \in \mathscr{C} }{\mathcal{X} \sqsupseteq \mathcal{F}}$
we have $\bigsqcap S \sqsupseteq \mathcal{F} \neq \bot^{\mathscr{F} (X)}$. Thus $\bigsqcup S$ is a Cauchy
filter and so $\bigsqcup S \in \setcond{\mathcal{X} \in \mathscr{C} }{\mathcal{X} \sqsupseteq \mathcal{F}}$.
\end{proof}
\begin{cor}
Every proper Cauchy filter is contained in a unique maximal Cauchy filter (for completely almost sub-join spaces).
\end{cor}
\begin{proof}
Let $\mathcal{F}$ be a proper Cauchy filter. Then
$\bigsqcup^{ \setcond{\mathcal{X} \in \mathscr{C} }{\mathcal{X} \sqsupseteq \mathcal{F}} }\setcond{\mathcal{X} \in \mathscr{C} }{\mathcal{X} \sqsupseteq \mathcal{F}}$
(existing by the above proposition) is the maximal Cauchy filter containing~$\mathcal{F}$.
Suppose another maximal Cauchy filter~$\mathcal{T}$ contains~$\mathcal{F}$. Then $\mathcal{T}\in\setcond{\mathcal{X} \in \mathscr{C} }{\mathcal{X} \sqsupseteq \mathcal{F}}$
and thus $\mathcal{T} = \bigsqcup^{ \setcond{\mathcal{X} \in \mathscr{C} }{\mathcal{X} \sqsupseteq \mathcal{F}} }\setcond{\mathcal{X} \in \mathscr{C} }{\mathcal{X} \sqsupseteq \mathcal{F}}$.
\end{proof}
\section{Relationships with symmetric reloids}
\fxnote{Also consider relationships with funcoids.}
\begin{defn}
Denote $(\mathsf{RLD})_{\Low} \left( U , \mathscr{C} \right) =
\bigsqcup \setcond{ \mathcal{X} \times^{\mathsf{RLD}} \mathcal{X}}
{\mathcal{X} \in \mathscr{C} }$.
\end{defn}
\begin{defn}
$(\Low) \nu$ (\emph{low space} for endoreloid $\nu$) is a low
space on $U$ such that
\[ \GR (\Low) \nu = \setcond{\mathcal{X} \in \mathscr{F}(U)}
{\mathcal{X} \times^{\mathsf{RLD}} \mathcal{X} \sqsubseteq \nu } . \]
\end{defn}
\begin{thm}
If $\left( U , \mathscr{C} \right)$ is a low space, then $\left( U ,
\mathscr{C} \right) = (\Low) (\mathsf{RLD})_{\Low} \left(
U , \mathscr{C} \right)$.
\end{thm}
\begin{proof}
If $\mathcal{X} \in \mathscr{C}$ then $\mathcal{X}
\times^{\mathsf{RLD}} \mathcal{X} \sqsubseteq
(\mathsf{RLD})_{\Low} \left( U , \mathscr{C} \right)$ and thus
$\mathcal{X} \in \GR (\Low) (\mathsf{RLD})_{\Low}
\left( U , \mathscr{C} \right)$. Thus $\left( U , \mathscr{C} \right)
\sqsubseteq (\Low) (\mathsf{RLD})_{\Low} \left( U ,
\mathscr{C} \right)$.
Let's prove $\left( U , \mathscr{C} \right) \sqsupseteq (\Low)
(\mathsf{RLD})_{\Low} \left( U , \mathscr{C} \right)$.
Let $\mathcal{A} \in \GR (\Low)
(\mathsf{RLD})_{\Low} \left( U , \mathscr{C} \right)$. We need
to prove $\mathcal{A} \in \mathscr{C}$.
Really $\mathcal{A} \times^{\mathsf{RLD}} \mathcal{A} \sqsubseteq
(\mathsf{RLD})_{\Low} \left( U , \mathscr{C} \right)$. It is
enough to prove that $\exists \mathcal{X} \in \mathscr{C} : \mathcal{A}
\sqsubseteq \mathcal{X}$.
Suppose $\nexists \mathcal{X} \in \mathscr{C} : \mathcal{A} \sqsubseteq
\mathcal{X}$.
For every $\mathcal{X} \in \mathscr{C}$ obtain $X_{\mathcal{X}} \in
\mathcal{X}$ such that $X_{\mathcal{X}} \notin \mathcal{A}$ (if forall $X \in
\mathcal{X}$ we have $X_{\mathcal{X}} \in \mathcal{A}$, then $\mathcal{X}
\sqsupseteq \mathcal{A}$ what is contrary to our supposition).
It is now enough to prove $\mathcal{A} \times^{\mathsf{RLD}}
\mathcal{A} \nsqsubseteq \bigsqcup \setcond{ \uparrow^U
X_{\mathcal{X}} \times^{\mathsf{RLD}} \uparrow^U X_{\mathcal{X}}
}{\mathcal{X} \in \mathscr{C} }$.
Really, $\bigsqcup \setcond{ \uparrow^U X_{\mathcal{X}}
\times^{\mathsf{RLD}} \uparrow^U X_{\mathcal{X}} }{
\mathcal{X} \in \mathscr{C} } =
\uparrow^{\mathsf{RLD} (U , U)} \bigcup \setcond{ \uparrow^U X_{\mathcal{X}}
\times^{\mathsf{RLD}} \uparrow^U X_{\mathcal{X}} }{
\mathcal{X} \in \mathscr{C} }$. So our claim takes the form $\bigcup \setcond{ \uparrow^U X_{\mathcal{X}}
\times^{\mathsf{RLD}} \uparrow^U X_{\mathcal{X}} }{
\mathcal{X} \in \mathscr{C} } \notin \GR (\mathcal{A}
\times^{\mathsf{RLD}} \mathcal{A})$ that is $\forall A \in
\mathcal{A} : \bigcup \setcond{ \uparrow^U X_{\mathcal{X}}
\times^{\mathsf{RLD}} \uparrow^U X_{\mathcal{X}} }{
\mathcal{X} \in \mathscr{C} } \nsupseteq
A \times A$ what is true because $X_{\mathcal{X}} \nsupseteq A$ for every $A
\in \mathcal{A}$.
\end{proof}
\begin{rem}
The last theorem does not hold with $\mathcal{X}
\times^{\mathsf{FCD}} \mathcal{X}$ instead of $\mathcal{X}
\times^{\mathsf{RLD}} \mathcal{X}$ (take $\mathscr{C} = \setcond{ \{ x
\} }{x \in U}$ for an infinite set $U$ as a counter-example).
\end{rem}
\begin{rem}
Not every symmetric reloid is in the form
$(\mathsf{RLD})_{\Low} \left( U , \mathscr{C} \right)$ for some
Cauchy space $\left( U , \mathscr{C} \right)$. The same Cauchy space can be
induced by different uniform spaces. See
\url{http://math.stackexchange.com/questions/702182/different-uniform-spaces-having-the-same-set-of-cauchy-filters}
\end{rem}
\begin{prop}
~
\begin{enumerate}
\item \label{low-rld-relf}$(\Low)f$~is reflexive iff endoreloid~$f$ is reflexive.
\item \label{rld-low-relf}$(\mathsf{RLD})_{\Low}f$~is reflexive iff low space~$f$ is reflexive.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{widedisorder}
\item[\ref{low-rld-relf}] $\text{$f$ is reflexive} \Leftrightarrow
1^{\mathsf{RLD}}\sqsubseteq f \Leftrightarrow \forall x\in\Ob f:\uparrow(\{x\}\times\{x\})\sqsubseteq f \Leftrightarrow
\forall x\in\Ob f:\uparrow\{x\}\times^{\mathsf{RLD}}\uparrow\{x\}\sqsubseteq f \Leftrightarrow
\forall x\in\Ob f:\uparrow\{x\}\in(\Low)f \Leftrightarrow \text{$(\Low)f$~is reflexive}$.
\item[\ref{rld-low-relf}] Let $f$ is reflexive. Then $\forall x\in\Ob f:\uparrow\{x\}\in f$;
$\forall x\in\Ob f:\uparrow\{x\}\times^{\mathsf{RLD}}\uparrow\{x\}\sqsubseteq(\mathsf{RLD})_{\Low}f$;
$\forall x\in\Ob f:\uparrow(\{x\}\times\{x\})\sqsubseteq(\mathsf{RLD})_{\Low}f$;
$1^{\mathsf{RLD}}\sqsubseteq(\mathsf{RLD})_{\Low}f$.
Let now $(\mathsf{RLD})_{\Low}f$~be reflexive. Then $f = (\Low)(\mathsf{RLD})_{\Low}f$ is reflexive.
\end{widedisorder}
\end{proof}
\begin{defn}
A \emph{transitive} low space is such low space~$f$ that $(\mathsf{RLD})_{\Low}f\circ(\mathsf{RLD})_{\Low}f=(\mathsf{RLD})_{\Low}f$.
\end{defn}
\begin{rem}
The composition $(\mathsf{RLD})_{\Low}f\circ(\mathsf{RLD})_{\Low}f$ may be inequal to $(\mathsf{RLD})_{\Low}\mu$ for all low spaces~$\mu$ (exercise!).
Thus usefulness of the concept of transitive low spaces is questionable.
\end{rem}
\begin{rem}
Every low space is ``symmetric'' in the sense that it corresponds to a symmetric reloid.
\end{rem}
\begin{thm}
$(\Low)$ is the upper adjoint of $(\mathsf{RLD})_{\Low}$.
\end{thm}
\begin{proof}
We will prove $(\Low) (\mathsf{RLD})_{\Low} f \sqsupseteq
f$ and $(\mathsf{RLD})_{\Low} (\Low) g \sqsubseteq g$
(that $(\Low)$ and $(\mathsf{RLD})_{\Low}$ are monotone
is obvious).
Really:
\begin{multline*}
\GR (\Low) (\mathsf{RLD})_{\Low} f =
\GR (\Low) \bigsqcup \setcond{ \mathcal{X}
\times^{\mathsf{RLD}} \mathcal{X} }{
\mathcal{X} \in \GR f } = \\
\setcond{ \mathcal{Y} \in \mathscr{F}\Ob (f) }{ \mathcal{Y}
\times^{\mathsf{RLD}} \mathcal{Y} \sqsubseteq \bigsqcup \setcond{
\mathcal{X} \times^{\mathsf{RLD}} \mathcal{X} }{
\mathcal{X} \in \GR f } } \supseteq \setcond{
\mathcal{Y} \in \mathscr{F} \Ob (f) }{
\mathcal{Y} \in \GR f } = \GR f;
\end{multline*}
$(\mathsf{RLD})_{\Low} (\Low) g = \bigsqcup \setcond{
\mathcal{X} \times^{\mathsf{RLD}} \mathcal{X} }{
\mathcal{X} \in \GR (\Low) g } = \bigsqcup
\setcond{ \mathcal{X} \times^{\mathsf{RLD}} \mathcal{X} }{
\mathcal{X} \in \mathscr{F}(\Ob g),
\mathcal{X} \times^{\mathsf{RLD}} \mathcal{X}
\sqsubseteq g } \sqsubseteq g$.
\end{proof}
\begin{cor}
~
\begin{enumerate}
\item $(\mathsf{RLD})_{\Low} \bigsqcup S = \bigsqcup \langle
(\mathsf{RLD})_{\Low} \rangle^{\ast} S$;
\item $(\Low) \bigsqcap S = \bigsqcap \langle (\Low)
\rangle^{\ast} S$.
\end{enumerate}
\end{cor}
Below it's proved that $(\Low)$ and $(\mathsf{RLD})_{\Low}$ can be restricted to completely almost sub-join spaces and symmetrically transitive reloids.
Thus they preserve joins of (completely) almost sub-join spaces and meets of symmetrically transitive reloids.
\fxwarning{Check.}
\fxwarning{Move it to be below the definition.}
\section{Lattices of low spaces}
\begin{prop}\label{ls-order2}
$\mu \sqsubseteq \nu \Leftrightarrow \forall \mathcal{X}\in\GR\mu \exists\mathcal{Y}\in\GR\nu: \mathcal{X}\sqsubseteq\mathcal{Y}$ for
low filter spaces (on the same set~$U$).
\end{prop}
\begin{proof}
~
\begin{description}
\item[$\Rightarrow$] $\mu \sqsubseteq \nu \Leftrightarrow \GR\mu\subseteq\GR\nu \Rightarrow
\forall \mathcal{X}\in\GR\mu \exists\mathcal{Y}\in\GR\nu: \mathcal{X}=\mathcal{Y} \Rightarrow
\forall \mathcal{X}\in\GR\mu \exists\mathcal{Y}\in\GR\nu: \mathcal{X}\sqsubseteq\mathcal{Y}$.
\item[$\Leftarrow$] Let $\forall \mathcal{X}\in\GR\mu \exists\mathcal{Y}\in\GR\nu: \mathcal{X}\sqsubseteq\mathcal{Y}$.
Take $\mathcal{X}\in\GR\mu$. Then $\exists\mathcal{Y}\in\GR\nu: \mathcal{X}\sqsubseteq\mathcal{Y}$. Thus $\mathcal{X}\in\GR\nu$.
So $\GR\mu\subseteq\GR\nu$ that is $\mu \sqsubseteq \nu$.
\end{description}
\end{proof}
\begin{obvious}
~
\begin{enumerate}
\item $(\mathsf{RLD})_{\Low}$ is an order embedding.
\item $(\Low)$ is an order homomorphism.
\end{enumerate}
\end{obvious}
I will denote $\bigsqcup$, $\bigsqcap$, $\sqcup$, $\sqcap$ the lattice operations on low spaces or graphs of low spaces.
\begin{prop}
$\bigsqcup S=\bigcup S$ for every set~$S$ of graphs of low spaces on some set.
\end{prop}
\begin{proof}
It's enough to prove that there is a low space~$\mu$ such that $\GR\mu=\bigcup S$. In other words, it's enough to prove
that $\bigcup S$ is a nonempty lower set, but that's obvious. \fxwarning{A little more detailed proof.}
\end{proof}
\begin{prop}
$\bigsqcap S=\setcond{\bigsqcap\im P}{P\in\prod_{X\in S} X}$ for every set~$S$ of graphs of low spaces on some set.
\end{prop}
\begin{proof}
First prove that there is such low space~$\mu$ that $\mu=\setcond{\bigsqcap\im P}{P\in\prod_{X\in S} X}$. In other words,
we need to prove that $\setcond{\bigsqcap\im P}{P\in\prod_{X\in S} X}$ is a nonempty lower set. That it is nonempty is obvious.
Let filter $\mathcal{G}\sqsubseteq\mathcal{F}$ and $\mathcal{F}\in\setcond{\bigsqcap\im P}{P\in\prod_{X\in S} X}$. Then
$\mathcal{F}=\bigsqcap\im P$ for a $P\in\prod_{X\in S} X$ that is $P(X)\in X$ for every $X\in S$. Take $P'=(\mathcal{G}\sqcap)\circ P$.
Then $P'\in\prod_{X\in S} X$ because $P'(X)\in X$ for every $X\in S$ and thus
obviously $\mathcal{G}=\bigsqcap\im P'$ and thus $\mathcal{G}\in\setcond{\bigsqcap\im P}{P\in\prod_{X\in S} X}$. So such~$\mu$ exists.
It remains to prove that $\mu$ is the greatest lower bound of~$S$.
$\mu$ is a lower bound of~$S$. Really, let $X\in S$ and $Y\in X$.
Then exists $P\in\prod_{X\in S} X$ such that $P(X)=Y$ (taken into account that every $ X$ is nonempty)
and thus $\im P\ni Y$ and so $\bigsqcap\im P\sqsubseteq Y$, that is (proposition~\ref{ls-order2}) $\mu\sqsubseteq X$.
Let $\nu$ be a lower bound of~$S$. It remains to prove that $\mu\sqsupseteq\nu$, that is
$\forall Q\in\nu: Q=\bigsqcap\im P$ for some $P\in\prod_{X\in S} X$.
Take $P=(\mylambda{X}{S}{Q})$. This $P\in\prod_{X\in S} X$ because $Q\in X$ for every~$X\in S$.
\end{proof}
\begin{cor}
$f\sqcap g = \setcond{F\sqcap G}{F\in f,G\in g}$ for every graphs~$f$ and~$g$ of low spaces (on some set).
\end{cor}
\subsection{Its subsets}
\begin{prop}
The set of sub-join low spaces (on some fixed set) is meet-closed in the lattice of low spaces on a set.
\end{prop}
\begin{proof}
Let $f$, $g$ be graphs of almost sub-join spaces (on some fixed set), $f\sqcap g = \setcond{F\sqcap G}{F\in f,G\in g}$.
If $\mathcal{A}, \mathcal{B} \in f\sqcap g$ and $\mathcal{A}
\nasymp \mathcal{B}$, then $\mathcal{A}, \mathcal{B} \in f$ and $\mathcal{A}, \mathcal{B} \in g$.
Thus $\mathcal{A}\sqcup\mathcal{B}\in f$ and $\mathcal{A}\sqcup\mathcal{B}\in g$ and so
$\mathcal{A} \sqcup \mathcal{B} \in f\sqcap g$.
\end{proof}
\begin{cor}
The set of Cauchy spaces (on some fixed set), is meet-closed in the lattice of low spaces on a set.
\end{cor}
\begin{prop}
The set of completely almost sub-join spaces is meet-closed in the lattice of low spaces on a set.
\end{prop}
\begin{proof}
Let $S$~be a set of graphs of almost completely sub-join low spaces (on some fixed set). $ \bigsqcap S = \setcond{ \bigsqcap
\im P }{ P \in \prod_{X \in S} X}$.
If $\mathcal{A}, \mathcal{B} \in \bigsqcap S$ and $\mathcal{A}
\nasymp \mathcal{B}$, then $\mathcal{A}, \mathcal{B} \in X$ for
every $X \in S$. Thus $\mathcal{A} \sqcup \mathcal{B} \in X$ and so
$\mathcal{A} \sqcup \mathcal{B} \in \bigsqcap S$.
\end{proof}
\begin{cor}
The set of completely Cauchy spaces is meet-closed in the lattice of low spaces on a set.
\end{cor}
From the above it follows:
\begin{obvious}
The following sets are complete lattices in our order:
\begin{enumerate}
\item almost sub-join spaces, whose graphs are almost sub-join-semilattices;
\item completely almost sub-join spaces;
\item reflexive low spaces;
\item precauchy spaces;
\item Cauchy spaces;
\item completely Cauchy spaces.
\end{enumerate}
\end{obvious}
Denote $Z(f)=\setcond{F\sqcup G}{F\in f,G\in f,F\nasymp G}\cup\{\bot\}$ for every set $f$ of filters (on some fixed set).
\begin{prop}
$Z(f)\sqsupseteq f$ for every set $f$ of filters.
\end{prop}
\begin{proof}
Consider for $F\in f$ both cases $F=\bot$ and $F\ne\bot$.
\end{proof}
\begin{lem}
For graphs of low spaces~$f$, $g$ (on the same set)
\[
Q = \bigcup S\cup Z\left(\bigcup S\right)\cup Z\left(Z\left(\bigcup S\right)\right)\cup\dots
\]
is a graph of some almost sub-join space.
\end{lem}
\begin{proof}
That it is nonempty and a lower set of filters is obvious. It remains to prove that it is an almost sub-join-semilattice.
Let $\mathcal{A},\mathcal{B}\in Q$ and $\mathcal{A}\nasymp\mathcal{B}$.
Then
\[
\mathcal{A},\mathcal{B} \in \underbrace{Z\dots Z}_{n\text{ times}}\left(\bigcup S\right)
\]
for a natural~$n$. Thus
\[
\mathcal{A}\sqcup\mathcal{B} \in \underbrace{Z\dots Z}_{n+1\text{ times}}\left(\bigcup S\right)
\]
and so $\mathcal{A}\sqcup\mathcal{B}\in Q$.
\end{proof}
\begin{prop}
Join on the lattice of graphs of almost sub-join spaces is described by the formula
\[
\bigsqcup^{\mathbf{ASJ}}S = \bigcup S\cup Z\left(\bigcup S\right)\cup Z\left(Z\left(\bigcup S\right)\right)\cup\dots
\]
\end{prop}
\begin{proof}
The right part of the above formula~$\mu$ is a graph of an almost sub-join space (lemma).
That $\mu$ is an upper bound of $S$ is obvious.
It remains to prove that $\mu$ is the least upper bound.
Suppose $\nu$~is an upper bound of $S$. Then $\nu\supseteq\bigcup S$. Thus, because $\nu$ is an almost sub-join-semilattice,
$Z(\nu)\subseteq\nu$, likewise $Z(Z(\nu))\subseteq\nu$, etc. Consequently $Z(\bigcup S)\subseteq\nu$, $Z(Z(\bigcup S))\subseteq\nu$, etc.
So we have $\mu\sqsubseteq\nu$.
\end{proof}
\begin{prop}
~ \fxnote{Should be merged with the previous proposition.}
\[
\bigsqcup^{\mathbf{ASJ}}S =
\setcond{F_0\sqcup\dots\sqcup F_{n-1}}{F_0,\dots,F_{n-1}\in\bigcup S,F_0\nasymp F_1\land F_1\nasymp F_2\land\dots\land F_{n-2}\nasymp F_{n-1} \text{ for } n\in\mathbb{N}}.
\]
\end{prop}
\begin{rem}
We take $F_0\sqcup\dots\sqcup F_{n-1} = \bot$ for $n=0$.
\end{rem}
\begin{proof}
Denote the right part of the above formula as~$R$.
Suppose $F\in R$. Let's prove by induction that $F\in Q$. If $F=\bot$ that's obvious. Suppose we know that
$F_0\sqcup\dots\sqcup F_{n-1}\in Q$ that is for a natural~$m$
\[F_0\sqcup\dots\sqcup F_{n-1}\in \underbrace{Z\dots Z}_{m\text{ times}}\left(\bigcup S\right)\]
for $F_0,\dots,F_{n-1}\in\bigcup S$, $F_0\nasymp F_1\land F_1\nasymp F_2\land\dots\land F_{n-2}\nasymp F_{n-1}$
and also $F_{n-1}\nasymp F_n$. Then $F_0\sqcup\dots\sqcup F_{n-1}\nasymp F_n$ and thus
$F_0\sqcup\dots\sqcup F_{n-1}\sqcup F_n\in \underbrace{Z\dots Z}_{m+1\text{ times}}\left(\bigcup S\right)$ that is
$F_0\sqcup\dots\sqcup F_{n-1}\sqcup F_n\in Q$. So $F\in Q$ for every~$F\in R$.
Now suppose $F\in Q$ that is for a natural~$m$
\[F \in \underbrace{Z\dots Z}_{m\text{ times}}\left(\bigcup S\right).\]
Let's prove by induction that $F=F_0\sqcup\dots\sqcup F_{n-1}$ for some $F_0,\dots,F_{n-1}\in\bigcup S$
such that $F_0\nasymp F_1\land F_1\nasymp F_2\land\dots\land F_{n-2}\nasymp F_{n-1}$.
If $m=0$ then $F\in\bigcup S$ and our promise is obvious.
Let our statement holds for a natural~$m$. Prove that it holds for
\[F' \in \underbrace{Z\dots Z}_{m+1\text{ times}}\left(\bigcup S\right).\]
We have $F'=Z(F)$ for some $F=F_0\sqcup\dots\sqcup F_{n-1}$ where $F_0\nasymp F_1\land F_1\nasymp F_2\land\dots\land F_{n-2}\nasymp F_{n-1}$.
The case $F'=\bot$ is easy. So we can assume $F'=A\sqcup B$ where $A,B\in F$ and $A\nasymp B$.
By the statement of induction $A=A_0\sqcup\dots\sqcup A_{p-1}$, $B=B_0\sqcup\dots\sqcup B_{q-1}$ for natural~$p$ and~$q$,
where $A_0\nasymp A_1\land A_1\nasymp A_2\land\dots\land A_{p-2}\nasymp A_{p-1}$,
$B_0\nasymp B_1\land B_1\nasymp B_2\land\dots\land B_{n-2}\nasymp B_{n-1}$.
Take $j$ such that $A\nasymp B_j$ and then take $i$ such that $A_i\nasymp B_j$.
Then (using symmetry of the relation~$\nasymp$) we have
$(A_0\nasymp A_1\land A_1\nasymp A_2\land\dots\land A_{p-2}\nasymp A_{p-1}) \land
(A_{p-1} \nasymp A_{p-2} \nasymp \dots A_{i+1} \nasymp A_i) \land A_i \nasymp B_j \land
(B_j \nasymp B_{j-1} \land \dots \land B_1\nasymp B_0) \land
(B_0\nasymp B_1\land B_1\nasymp B_2\land\dots\land B_{q-2}\nasymp B_{q-1})$.
So $F'=A\sqcup B$ is representable as the join of a finite sequence of filters with each adjacent pair of filters in this sequence being intersecting.
That is $F'\in Q$.
\end{proof}
\begin{prop}
The lattice of Cauchy spaces (on some set) is a complete sublattice of the lattice of almost sub-join spaces.
\end{prop}
\begin{proof}
It's obvious, taking into account obvious~\ref{cs-refl-by-id}.
\end{proof}
Denote $Z_{\infty}(f)=\setcond{\bigsqcup T}{T\in\subsets f\land\bigsqcap T\ne\bot}\cup\{\bot\}$.
\begin{prop}
$Z_{\infty}(f)\sqsupseteq f$.
\end{prop}
\begin{proof}
Consider for $F\in f$ both cases $F=\bot$ and $F\ne\bot$.
\end{proof}
\begin{lem}
If $S$ is a set of graphs of low spaces, then
\[
Q = \bigcup S \cup Z_{\infty}\left(\bigcup S\right) \cup Z_{\infty}\left(Z_{\infty}\left(\bigcup S\right)\right) \cup \dots
\]
is a graph of a completely Cauchy space.
\end{lem}
\begin{proof}
That it is nonempty and a lower set of filters is obvious. It remains to prove that it is a completely almost sub-join-semilattice.
Let $T\in\subsets Q$ and $\bigsqcap T\ne\bot$.
Then
\[
T\in\subsets \underbrace{Z_{\infty}\dots Z_{\infty}}_{n\text{ times}}\left(\bigcup S\right)
\]
for a natural~$n$. Thus
\[
T\in\subsets \underbrace{Z_{\infty}\dots Z_{\infty}}_{n+1\text{ times}}\left(\bigcup S\right)
\]
and so $\bigsqcup T\in Q$.
\end{proof}
\begin{prop}
The lattice of completely Cauchy spaces (on some set) is a complete sublattice of the lattice of completely almost sub-join spaces.
\end{prop}
\begin{proof}
It's obvious, taking into account obvious~\ref{cs-refl-by-id}.
\end{proof}
\begin{prop}
Join of a set~$S$ on the lattice of graphs of completely almost sub-join-semilattice is described by the formula:
\[
\bigsqcup^{\mathbf{CASJ}}S=\bigcup S \cup Z_{\infty}\left(\bigcup S\right) \cup Z_{\infty}\left(Z_{\infty}\left(\bigcup S\right)\right) \cup \dots
\]
\end{prop}
\begin{proof}
The right part of the above formula~$\mu$ is a graph of an almost sub-join space (lemma).
That $\mu$ is an upper bound of $S$ is obvious.
It remains to prove that $\mu$ is the least upper bound.
Suppose $\nu$~is an upper bound of $S$. Then $\nu\supseteq\bigcup S$. Thus, because $\nu$ is an almost sub-join-semilattice,
$Z_{\infty}(\nu)\subseteq\nu$, likewise $Z_{\infty}(Z_{\infty}(\nu))\subseteq\nu$, etc. Consequently $Z_{\infty}(\bigcup S)\subseteq\nu$, $Z_{\infty}(Z_{\infty}(\bigcup S))\subseteq\nu$, etc.
So we have $\mu\sqsubseteq\nu$.
\end{proof}
\begin{conjecture}
~
\begin{enumerate}
\item $\bigsqcup^{\mathbf{CASJ}}S=
\setcond{\bigsqcup T_0\sqcup\dots\sqcup\bigsqcup T_{n-1}}{
\begin{aligned}
&n\in\mathbb{N},T_0,\dots,T_{n-1}\in\bigcup S, \\
&\bigsqcap T_0\ne\bot\land\dots\land\bigsqcap T_{n-1}\ne\bot, \\
&\bigsqcup T_0\nasymp\bigsqcup T_1\land\dots\land\bigsqcup T_{n-2}\nasymp\bigsqcup T_{n-1}.
\end{aligned}}$;
\item $\bigsqcup^{\mathbf{CASJ}}S=
\setcond{\bigsqcup T_0\sqcup \bigsqcup T_1\sqcup\dots}{
\begin{aligned}
&T_0,T_1,\dots\in\bigcup S, \\
&\bigsqcap T_0\ne\bot\land\bigsqcap T_2\ne\bot\land\dots,
\bigsqcup T_0\nasymp\bigsqcup T_1\land\bigsqcup T_1\nasymp\bigsqcup T_2\land\dots
\end{aligned}}$.
\end{enumerate}
\end{conjecture}
\section{Up-complete low spaces}
\begin{defn}
\emph{Ideal base} is a nonempty subset $S$ of a poset such that $\forall
a, b \in S \exists c \in S : (a, b \sqsubseteq c)$.
\end{defn}
\begin{obvious}
Ideal base is dual of filter base.
\end{obvious}
\begin{thm}
Product of nonempty posets is a ideal base iff every factor is an ideal
base.
\end{thm}
\begin{proof}
\fxwarning{more detailed proof}
In one direction it is easy: Suppose one multiplier is not a dcpo. Take a
chain with fixed elements (thanks our posets are nonempty) from other
multipliers and for this multiplier take the values which form a chain
without the join. This proves that the product is not a dcpo.
Let now every factor is dcpo. $S$ is a filter base in $\prod \mathfrak{A}$
iff each component is a filter base. Each component has a join. Thus by proposition~\bookref{cw-join} $S$ has a componentwise join.
\end{proof}
\begin{defn}
I call a low space \emph{up-complete} when each ideal base (or
equivalently every nonempty chain, see theorem~\bookref{fclosed}) in this space has join in
this space.
\end{defn}
\begin{rem}
Elements of this ideal base are filters. (Thus is could be called a
generalized ideal base.)
\end{rem}
\begin{example}
~
\begin{enumerate}
\item $\setcond{ \mathcal{X} \in \mathfrak{F} ]0 ; + \infty[ }{
\exists \varepsilon > 0 : \mathcal{X} \sqsubseteq \uparrow
]\varepsilon ; + \infty[ } \cup \uparrow\{ 0 \}$ is a graph of Cauchy space
on $\mathbb{R}_+$, but not up-complete.
\item $\mathfrak{F} [0 ; + \infty[$ is a strictly greater graph of Cauchy
space on $\mathbb{R}_+$ and is up-complete.
\end{enumerate}
\end{example}
\begin{lem}
Let $f$ be a reloid. Each ideal base $T \subseteq \setcond{ (\mathcal{A} ,
\mathcal{B}) }{ \mathcal{A}
\times^{\mathsf{RLD}} \mathcal{B} \sqsubseteq f }$ has a join
in this set.
\end{lem}
\begin{proof}
Let $T$ be an ideal base and $\forall (\mathcal{A} , \mathcal{B}) \in T :
\mathcal{A} \times^{\mathsf{FCD}} \mathcal{B} \sqsubseteq f$.
$\forall (\mathcal{A} , \mathcal{B}) \in T \forall \mathcal{X} \in
\mathscr{F} \Src f : (\mathcal{X} \nasymp \mathcal{A} \Rightarrow
\mathcal{B} \sqsubseteq \supfun{f} \mathcal{X})$;
taking join we have:
$\forall \mathcal{A} \in \Pr_0 T \forall \mathcal{X} \in \mathscr{F}
\Src f : \left( \mathcal{X} \nasymp \mathcal{A} \Rightarrow
\bigsqcup_{\mathcal{B} \in \Pr_1 T} \mathcal{B} \sqsubseteq \langle f
\rangle \mathcal{X} \right)$;
$\forall \mathcal{A} \in \Pr_0 T : \mathcal{A} \times^{\mathsf{FCD}}
\bigsqcup_{\mathcal{B} \in \Pr_1 T} \mathcal{B} \sqsubseteq f$.
Now repeat a similar operation second time:
$\forall \mathcal{A} \in \Pr_0 T : \bigsqcup_{\mathcal{B} \in \Pr_1 T}
\mathcal{B} \times^{\mathsf{FCD}} \mathcal{A} \sqsubseteq f^{- 1}$;
$\forall \mathcal{A} \in \Pr_0 T \forall \mathcal{Y} \in \mathscr{F}
\Dst f : \left( \mathcal{Y} \nasymp \bigsqcup_{\mathcal{B} \in \Pr_1
T} \mathcal{B} \Rightarrow \mathcal{A} \sqsubseteq \langle f^{- 1} \rangle
\mathcal{Y} \right)$;
$\forall \mathcal{Y} \in \mathscr{F} \Dst f : \left( \mathcal{Y}
\nasymp \bigsqcup_{\mathcal{B} \in \Pr_1 T} \mathcal{B} \Rightarrow
\bigsqcup_{\mathcal{A} \in \Pr_0 T} \mathcal{A} \sqsubseteq \langle f^{- 1}
\rangle \mathcal{Y} \right)$;
$\bigsqcup_{\mathcal{B} \in \Pr_1 T} \mathcal{B}
\times^{\mathsf{FCD}} \bigsqcup_{\mathcal{A} \in \Pr_0 T} \mathcal{A}
\sqsubseteq f^{- 1}$;
$\bigsqcup_{\mathcal{A} \in \Pr_0 T} \mathcal{A}
\times^{\mathsf{FCD}} \bigsqcup_{\mathcal{B} \in \Pr_1 T} \mathcal{B}
\sqsubseteq f$. But $\bigsqcup_{\mathcal{A} \in \Pr_0 T} \mathcal{A}
\times^{\mathsf{FCD}} \bigsqcup_{\mathcal{B} \in \Pr_1 T}
\mathcal{B}$ is the join in consideration, because ideal base is ideal base
in each argument.
\end{proof}
\begin{prop}
A Cauchy space generated by an endoreloid is always up-complete.
\end{prop}
\begin{proof}
Let $f$ be an endoreloid. $\GR (\Low) f = \setcond{ \mathcal{X} \in
\Ob f }{ \mathcal{X}
\times^{\mathsf{RLD}} \mathcal{X} \sqsubseteq f }$.
Let $T\subseteq \setcond{ \mathcal{X} \in \Ob f }{ \mathcal{X} \times^{\mathsf{RLD}} \mathcal{X} \sqsubseteq f }$
be an ideal base.
Then $N = \setcond{(\mathcal{F},\mathcal{F})}{\mathcal{F}\in T}$ is also an ideal base.
Obviously $N \subseteq \setcond{ (\mathcal{A} , \mathcal{B}) }{ \mathcal{A} \times^{\mathsf{RLD}} \mathcal{B} \sqsubseteq f }$.
Thus by the lemma it has a join in
$\setcond{ (\mathcal{A} , \mathcal{B}) }{ \mathcal{A} \times^{\mathsf{RLD}} \mathcal{B} \sqsubseteq f }$.
It's easy to see that this join is in
$\setcond{ (\mathcal{A} , \mathcal{A}) }{ \mathcal{A}\in\Ob f, \mathcal{A} \times^{\mathsf{RLD}} \mathcal{A} \sqsubseteq f }$.
Consequently $T$ has a join in $\setcond{ \mathcal{X} \in \Ob f }{ \mathcal{X} \times^{\mathsf{RLD}} \mathcal{X} \sqsubseteq f }$.
\end{proof}
It is long time known that (using our terminology) low space induced by a
uniform space is a Cauchy space, but that it is complete and up-complete is
probably first discovered by Victor Porton.
\section{More on Cauchy filters}
\begin{obvious}
Low filter on an endoreloid $\nu$ is a filter $\mathcal{F}$ such that
\[ \forall U \in \GR f \exists A \in \mathcal{F} : A \times A \subseteq
U. \]
\end{obvious}
\begin{rem}
The above formula is the standard definition of Cauchy filters on uniform
spaces.
\end{rem}
\begin{prop}
If $\nu \sqsupseteq \nu \circ \nu^{- 1}$ then every neighborhood filter is a
Cauchy filter, that it
\[ \nu \sqsupseteq \rsupfun{\tofcd \nu} \{ x \}
\times^{\mathsf{RLD}} \rsupfun{\tofcd \nu} \{ x \} \]
for every point $x$.
\end{prop}
\begin{proof}
$\rsupfun{\tofcd \nu} \{ x \}
\times^{\mathsf{RLD}} \rsupfun{\tofcd \nu} \{ x \} = \supfun{\tofcd \nu}
\uparrow^{\Ob \nu} \left\{ x \right\} \times^{\mathsf{RLD}}
\supfun{\tofcd \nu} \uparrow^{\Ob \nu} \{ x \} =
\nu \circ (\uparrow^{\Ob \nu} \{ x \} \times^{\mathsf{RLD}}
\uparrow^{\Ob \nu} \{ x \}) \circ \nu^{- 1} = \nu \circ
(\uparrow^{\mathsf{RLD} (\Ob \nu , \Ob \nu)} \{ (x , x)
\}) \circ \nu^{- 1} \sqsubseteq \nu \circ \id^{\mathsf{RLD}
(\Ob \nu , \Ob \nu)} \circ \nu^{- 1} = \nu \circ \nu^{- 1}
\sqsubseteq \nu$.
\end{proof}
\begin{prop}
If $\nu \sqsupseteq \nu \circ \nu^{- 1}$ a filter converges (in~$\nu$) to a point, it is a low filter, provided that every
neighborhood filter is a low filter.
\end{prop}
\begin{proof}
Let $\mathcal{F} \sqsubseteq \rsupfun{\tofcd \nu} \{ x \}$. Then $\mathcal{F} \times^{\mathsf{RLD}}
\mathcal{F} \sqsubseteq \rsupfun{\tofcd \nu} \{
x \} \times^{\mathsf{RLD}} \rsupfun{\tofcd \nu} \{ x \} \sqsubseteq \nu$.
\end{proof}
\begin{cor}
If a filter converges to a point, it is a low filter, provided that $\nu
\sqsupseteq \nu \circ \nu^{- 1}$.
\end{cor}
\section{Maximal Cauchy filters}
\begin{lem}
Let $S$ be a set of sets with $\bigsqcap \rsupfun{ \uparrow^{\mathfrak{F}} }
S \neq 0^{\mathfrak{F}}$ (in other words, $S$ has finite
intersection property). Let $T = \setcond{ X \times X}
{X \in S }$. Then
\[ \bigcup T \circ \bigcup T = \bigcup S \times \bigcup S. \]
\end{lem}
\begin{proof}
Let $x \in \bigcup S$. Then $x \in X$ for some $X \in S$. $\left\langle
\bigcup T \right\rangle \{ x \} \sqsupseteq \uparrow X \supseteq \bigcap S
\neq \emptyset$. Thus
$\left\langle \bigcup T \circ \bigcup T \right\rangle \{ x \} = \left\langle
\bigcup T \right\rangle \left\langle \bigcup T \right\rangle \{ x \} \in
\left\langle \uparrow^{\mathsf{FCD}} \bigcup T \right\rangle
\bigsqcap \langle \uparrow^{\mathfrak{F}} \rangle S \sqsupseteq \bigsqcup
\setcond{ \langle \uparrow^{\mathsf{FCD}} (X \times X) \rangle
\bigsqcap \langle \uparrow^{\mathfrak{F}} \rangle S }{
X \in S } = \bigsqcup \setcond{ \uparrow^{\mathfrak{F}} X}{X \in S } =
\bigsqcup \langle
\uparrow^{\mathfrak{F}} \rangle S$ that is $\left\langle \bigcup T \circ
\bigcup T \right\rangle \{ x \} \supseteq \bigcup S$.
\end{proof}
\begin{cor}
Let $S$ be a set of filters (on some fixed set) with nonempty meet. Let
\[ T = \setcond{ \mathcal{X} \times^{\mathsf{RLD}} \mathcal{X} }
{\mathcal{X} \in S} \]
Then
\[ \bigsqcup T \circ \bigsqcup T = \bigsqcup S \times^{\mathsf{RLD}}
\bigsqcup S. \]
\end{cor}
\begin{proof}
$\bigsqcup T \circ \bigsqcup T = \bigsqcap \setcond{ \uparrow^{\mathfrak{F}}
(X \circ X) }{ X \in \bigsqcup T }$.
If $X \in \bigsqcup T$ then $X = \bigcup_{Q \in T} (P_Q \times P_Q)$ where
$P_Q \in Q$. Therefore by the lemma we have
\[ \bigcup \setcond{ P_Q \times P_Q}{Q \in T} \circ \bigcup
\setcond{ P_Q \times P_Q}{ Q \in T } = \bigcup_{Q \in T} P_Q \times \bigcup_{Q \in T} P_Q .
\]
Thus $X \circ X = \bigcup_{Q \in T} P_Q \times \bigcup_{Q \in T} P_Q$.
Consequently $\bigsqcup T \circ \bigsqcup T = \bigsqcap \setcond{
\uparrow^{\mathfrak{F}} \left( \bigcup_{Q \in T} P_Q \times \bigcup_{Q \in
T} P_Q \right)}{X \in \bigsqcup T }
\sqsupseteq \bigsqcup S \times^{\mathsf{RLD}} \bigsqcup S$.
$\bigsqcup T \circ \bigsqcup T \sqsubseteq \bigsqcup S
\times^{\mathsf{RLD}} \bigsqcup S$ is obvious.
\end{proof}
\begin{defn}
I call an endoreloid $\nu$ \emph{symmetrically transitive} iff for every
symmetric endofuncoid $f \in \mathsf{FCD} (\Ob \nu , \Ob
\nu)$ we have $f \sqsubseteq \nu \Rightarrow f \circ f \sqsubseteq \nu$.
\end{defn}
\begin{obvious}
It is symmetrically transitive if at least one of the following holds:
\begin{enumerate}
\item $\nu \circ \nu \sqsubseteq \nu$;
\item $\nu \circ \nu^{- 1} \sqsubseteq \nu$;
\item $\nu^{- 1} \circ \nu \sqsubseteq \nu$.
\item $\nu^{- 1} \circ \nu^{- 1} \sqsubseteq \nu$.
\end{enumerate}
\end{obvious}
\begin{cor}
Every uniform space is symmetrically transitive.
\end{cor}
\begin{prop}
$(\Low) \nu$ is a completely Cauchy space for every symmetrically
transitive endoreloid $\nu$.
\end{prop}
\begin{proof}
Suppose $S \in \subsets \setcond{ \mathcal{X} \in \mathfrak{F} }{ \mathcal{X}
\times^{\mathsf{RLD}} \mathcal{X} \sqsubseteq \nu }$.
$\bigsqcup \setcond{ \mathcal{X} \times^{\mathsf{RLD}} \mathcal{X}}
{\mathcal{X} \in S } \sqsubseteq \nu$;
$\bigsqcup \setcond{ \mathcal{X} \times^{\mathsf{RLD}} \mathcal{X}}
{\mathcal{X} \in S } \circ \bigsqcup
\setcond{ \mathcal{X} \times^{\mathsf{RLD}} \mathcal{X} }
{\mathcal{X} \in S} \sqsubseteq \nu$; $\bigsqcup S
\times^{\mathsf{RLD}} \bigsqcup S \sqsubseteq \nu$ (taken into
account that $S$ has nonempty meet). Thus $\bigsqcup S$ is Cauchy.
\end{proof}
\begin{prop}
The neighbourhood filter $\langle \tofcd \nu \rangle^{\ast} \{
x \}$ of a point $x \in \Ob \nu$ is a maximal Cauchy filter, if it is a
Cauchy filter and $\nu$ is a reflexive reloid.
\fxnote{Does it holds for all low filters?}
\end{prop}
\begin{proof}
Let $\mathscr{N} = \langle \tofcd \nu \rangle^{\ast} \{ x
\}$. Let $\mathscr{C \sqsupseteq N}$ be a Cauchy filter. We need to show
$\mathscr{N \sqsupseteq C}$.
Since $\mathscr{C}$ is Cauchy filter, $\mathscr{C}
\times^{\mathsf{RLD}} \mathscr{C} \sqsubseteq \nu$. Since $\mathscr{C
\sqsupseteq N}$ we have $\mathscr{C}$ is a neighborhood of $x$ and thus
$\uparrow^{\Ob \nu} \{ x \} \sqsubseteq \mathscr{C}$ (reflexivity of
$\nu$). Thus $\uparrow^{\Ob \nu} \{ x \} \times^{\mathsf{RLD}}
\mathscr{C} \sqsubseteq \mathscr{C} \times^{\mathsf{RLD}}
\mathscr{C}$ and hence $\uparrow^{\Ob \nu} \{ x \}
\times^{\mathsf{RLD}} \mathscr{C} \sqsubseteq \nu$;
\[ \mathscr{C} \sqsubseteq \im (\nu |_{\uparrow^{\Ob \nu} \{ x
\}}) = \langle \tofcd \nu \rangle^{\ast} \{ x \} =
\mathscr{N} . \]
\end{proof}
\section{Cauchy continuous functions}
\begin{defn}
A function $f : U \rightarrow V$ is \emph{Cauchy continuous} from a low
space $\left( U , \mathscr{C} \right)$ to a low space
$\left( V , \mathscr{D} \right)$ when $\forall \mathcal{X} \in \mathscr{C} :
\langle \uparrow^{\mathsf{FCD}} f \rangle \mathcal{X} \in
\mathscr{D}$.
\end{defn}
\begin{prop}
Let $f$ be a principal reloid. Then $f \in \mathrm{C} \left(
(\mathsf{RLD})_{\Low} \mathscr{C} ,
(\mathsf{RLD})_{\Low} \mathscr{D} \right)$ iff $f$ is Cauchy
continuous.
\begin{eqnarray*}
f \circ (\mathsf{RLD})_{\Low} \mathscr{C} \circ f^{- 1}
\sqsubseteq (\mathsf{RLD})_{\Low} \mathscr{D} &
\Leftrightarrow & \\
\bigsqcup_{\mathcal{X} \in
\mathscr{C}} (f \circ (\mathcal{X} \times^{\mathsf{RLD}}
\mathcal{X} ) \circ f^{- 1} ) \sqsubseteq (\mathsf{RLD})_{\Low}
\mathscr{D} & \Leftrightarrow & \\
\bigsqcup_{\mathcal{X} \in \mathscr{C}} ( \langle \uparrow^{\mathsf{FCD}} f \rangle
\mathcal{X} \times^{\mathsf{RLD}} \langle
\uparrow^{\mathsf{FCD}} f \rangle \mathcal{X}) \sqsubseteq
(\mathsf{RLD})_{\Low} \mathscr{D} & \Leftrightarrow & \\
\forall \mathcal{X} \in \mathscr{C} : \langle
\uparrow^{\mathsf{FCD}} f \rangle \mathcal{X}
\times^{\mathsf{RLD}} \langle \uparrow^{\mathsf{FCD}} f
\rangle \mathcal{X} \sqsubseteq (\mathsf{RLD})_{\Low}
\mathscr{D} & \Leftrightarrow & \\
\forall \mathcal{X} \in \mathscr{C} : \langle
\uparrow^{\mathsf{FCD}} f \rangle \mathcal{X} \in \mathscr{D} . &
&
\end{eqnarray*}
\end{prop}
Thus we have expressed Cauchy properties through the algebra of reloids.
\section{Cauchy-complete reloids}
\begin{defn}
An endoreloid $\nu$ is \emph{Cauchy-complete} iff every low filter for
this reloid converges to a point.