-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdetector.go
399 lines (366 loc) · 13.1 KB
/
detector.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
package tracker
import (
"math"
"github.com/viterin/vek/vek32"
"github.com/vsariola/sointu"
)
type (
Detector struct {
broker *Broker
loudnessDetector loudnessDetector
peakDetector peakDetector
}
WeightingType int
LoudnessType int
PeakType int
Decibel float32
LoudnessResult [NumLoudnessTypes]Decibel
PeakResult [NumPeakTypes][2]Decibel
DetectorResult struct {
Loudness LoudnessResult
Peaks PeakResult
}
loudnessDetector struct {
weighting weighting
states [2][3]biquadState
powers [2]RingBuffer[float32] // 0 = momentary, 1 = short-term
averagedPowers [2][]float32
maxPowers [2]float32
integratedPower float32
tmp, tmp2 []float32
tmpbool []bool
}
biquadState struct {
x1, x2, y1, y2 float32
}
biquadCoeff struct {
b0, b1, b2, a1, a2 float32
}
weighting struct {
coeffs []biquadCoeff
offset float32
}
peakDetector struct {
oversampling bool
states [2]oversamplerState
windows [2][2]RingBuffer[float32]
maxPower [2]float32
tmp, tmp2 []float32
}
oversamplerState struct {
history [11]float32
tmp, tmp2 []float32
}
)
const (
LoudnessMomentary LoudnessType = iota
LoudnessShortTerm
LoudnessMaxMomentary
LoudnessMaxShortTerm
LoudnessIntegrated
NumLoudnessTypes
)
const MAX_INTEGRATED_DATA = 10 * 60 * 60 // 1 hour of samples at 10 Hz (100 ms per sample)
const (
PeakMomentary PeakType = iota
PeakShortTerm
PeakIntegrated
NumPeakTypes
)
const (
KWeighting WeightingType = iota
AWeighting
CWeighting
NoWeighting
)
func NewDetector(b *Broker) *Detector {
return &Detector{
broker: b,
loudnessDetector: makeLoudnessDetector(KWeighting),
peakDetector: makePeakDetector(true),
}
}
func (s *Detector) Run() {
var chunkHistory sointu.AudioBuffer
for msg := range s.broker.ToDetector {
if msg.Reset {
s.loudnessDetector.reset()
s.peakDetector.reset()
}
if msg.Quit {
return
}
switch data := msg.Data.(type) {
case *sointu.AudioBuffer:
buf := *data
for {
var chunk sointu.AudioBuffer
if len(chunkHistory) > 0 && len(chunkHistory) < 4410 {
l := min(len(buf), 4410-len(chunkHistory))
chunkHistory = append(chunkHistory, buf[:l]...)
if len(chunkHistory) < 4410 {
break
}
chunk = chunkHistory
buf = buf[l:]
} else {
if len(buf) >= 4410 {
chunk = buf[:4410]
buf = buf[4410:]
} else {
chunkHistory = chunkHistory[:0]
chunkHistory = append(chunkHistory, buf...)
break
}
}
trySend(s.broker.ToModel, MsgToModel{
HasDetectorResult: true,
DetectorResult: DetectorResult{
Loudness: s.loudnessDetector.update(chunk),
Peaks: s.peakDetector.update(chunk),
},
})
}
s.broker.PutAudioBuffer(data)
case func():
data()
}
}
}
// Close may theoretically block if the broker is full, but it should not happen in practice
func (s *Detector) Close() {
s.broker.ToDetector <- MsgToDetector{Quit: true}
}
func makeLoudnessDetector(weighting WeightingType) loudnessDetector {
return loudnessDetector{
weighting: weightings[weighting],
powers: [2]RingBuffer[float32]{
{Buffer: make([]float32, 4)}, // momentary loudness
{Buffer: make([]float32, 30)}, // short-term loudness
},
}
}
func makePeakDetector(oversampling bool) peakDetector {
return peakDetector{
oversampling: oversampling,
windows: [2][2]RingBuffer[float32]{
{{Buffer: make([]float32, 4)}, {Buffer: make([]float32, 30)}}, // momentary and short-term peaks for left channel
{{Buffer: make([]float32, 4)}, {Buffer: make([]float32, 30)}}, // momentary and short-term peaks for right channel
},
}
}
/*
From matlab:
f = getFilter(weightingFilter('A-weighting','SampleRate',44100)); f.Numerator, f.Denominator
for i = 1:size(f.Numerator,1); fprintf("b0: %.16f, b1: %.16f, b2: %.16f, a1: %.16f, a2: %.16f\n",f.Numerator(i,:),f.Denominator(i,2:end)); end
f = getFilter(weightingFilter('C-weighting','SampleRate',44100)); f.Numerator, f.Denominator
for i = 1:size(f.Numerator,1); fprintf("b0: %.16f, b1: %.16f, b2: %.16f, a1: %.16f, a2: %.16f\n",f.Numerator(i,:),f.Denominator(i,2:end)); end
f = getFilter(weightingFilter('k-weighting','SampleRate',44100)); f.Numerator, f.Denominator
for i = 1:size(f.Numerator,1); fprintf("b0: %.16f, b1: %.16f, b2: %.16f, a1: %.16f, a2: %.16f\n",f.Numerator(i,:),f.Denominator(i,2:end)); end
*/
var weightings = map[WeightingType]weighting{
AWeighting: {coeffs: []biquadCoeff{
{b0: 1, b1: 2, b2: 1, a1: -0.1405360824207108, a2: 0.0049375976155402},
{b0: 1, b1: -2, b2: 1, a1: -1.8849012174287920, a2: 0.8864214718161675},
{b0: 1, b1: -2, b2: 1, a1: -1.9941388812663283, a2: 0.9941474694445309},
}, offset: 0},
CWeighting: {coeffs: []biquadCoeff{
{b0: 1, b1: 2, b2: 1, a1: -0.1405360824207108, a2: 0.0049375976155402},
{b0: 1, b1: -2, b2: 1, a1: -1.9941388812663283, a2: 0.9941474694445309},
}, offset: 0},
KWeighting: {coeffs: []biquadCoeff{
{b0: 1.5308412300503476, b1: -2.6509799951547293, b2: 1.1690790799215869, a1: -1.6636551132560204, a2: 0.7125954280732254},
{b0: 0.9995600645425144, b1: -1.9991201290850289, b2: 0.9995600645425144, a1: -1.9891696736297957, a2: 0.9891990357870394},
}, offset: -0.691}, // offset is to make up for the fact that K-weighting has slightly above unity gain at 1 kHz
NoWeighting: {coeffs: []biquadCoeff{}, offset: 0},
}
// according to https://tech.ebu.ch/docs/tech/tech3341.pdf
// we have two sliding windows: momentary loudness = last 400 ms, short-term loudness = last 3 s
// display:
//
// momentary loudness = last analyzed 400 ms blcok
// short-term loudness = last analyzed 3 s block
//
// every 100 ms, we collect one data point of the momentary loudness (starting to play song again resets the data blocks)
// then:
//
// integrated loudness = the blocks are gated, and the average loudness of the gated blocks is calculated
// maximum momentary loudness = maximum of all the momentary blocks
// maximum short-term loudness = maximum of all the short-term blocks
func (d *loudnessDetector) update(chunk sointu.AudioBuffer) LoudnessResult {
l := max(len(chunk), MAX_INTEGRATED_DATA)
setSliceLength(&d.tmp, l)
setSliceLength(&d.tmp2, l)
setSliceLength(&d.tmpbool, l)
var total float32
for chn := 0; chn < 2; chn++ {
// deinterleave the channels
for i := 0; i < len(chunk); i++ {
d.tmp[i] = chunk[i][chn]
}
// filter the signal with the weighting filter
for k := 0; k < len(d.weighting.coeffs); k++ {
d.states[chn][k].Filter(d.tmp[:len(chunk)], d.weighting.coeffs[k])
}
// square the samples
res := vek32.Mul_Into(d.tmp2, d.tmp[:len(chunk)], d.tmp[:len(chunk)])
// calculate the mean and add it to the total
total += vek32.Mean(res)
}
var ret [NumLoudnessTypes]Decibel
for i := range d.powers {
d.powers[i].WriteWrapSingle(total) // these are sliding windows of 4 and 30 power measurements (400 ms and 3 s aka momentary and short-term windows)
mean := vek32.Mean(d.powers[i].Buffer)
if len(d.averagedPowers[i]) < MAX_INTEGRATED_DATA { // we need to have some limit on how much data we keep
d.averagedPowers[i] = append(d.averagedPowers[i], mean)
}
if d.maxPowers[i] < mean {
d.maxPowers[i] = mean
}
ret[i+int(LoudnessMomentary)] = power2loudness(mean, d.weighting.offset) // we assume the LoudnessMomentary is followed by LoudnessShortTerm
ret[i+int(LoudnessMaxMomentary)] = power2loudness(d.maxPowers[i], d.weighting.offset)
}
if len(d.averagedPowers[0])%10 == 0 { // every 10 samples of 100 ms i.e. every 1 s, we recalculate the integrated power
absThreshold := loudness2power(-70, d.weighting.offset) // -70 dB is the first threshold
b := vek32.GtNumber_Into(d.tmpbool, d.averagedPowers[0], absThreshold)
m2 := vek32.Select_Into(d.tmp, d.averagedPowers[0], b)
if len(m2) > 0 {
relThreshold := vek32.Mean(m2) / 10 // the relative threshold is 10 dB below the mean of the values above the absolute threshold
b2 := vek32.GtNumber_Into(d.tmpbool, m2, relThreshold)
m3 := vek32.Select_Into(d.tmp2, m2, b2)
if len(m3) > 0 {
d.integratedPower = vek32.Mean(m3)
}
}
}
ret[LoudnessIntegrated] = power2loudness(d.integratedPower, d.weighting.offset)
return ret
}
func (d *loudnessDetector) reset() {
for i := range d.powers {
d.powers[i].Cursor = 0
l := len(d.powers[i].Buffer)
d.powers[i].Buffer = d.powers[i].Buffer[:0]
d.powers[i].Buffer = append(d.powers[i].Buffer, make([]float32, l)...)
d.averagedPowers[i] = d.averagedPowers[i][:0]
d.maxPowers[i] = 0
}
d.integratedPower = 0
}
func power2loudness(power, offset float32) Decibel {
return Decibel(float32(10*math.Log10(float64(power))) + offset)
}
func loudness2power(loudness Decibel, offset float32) float32 {
return (float32)(math.Pow(10, (float64(loudness)-float64(offset))/10))
}
func (state *biquadState) Filter(buffer []float32, coeff biquadCoeff) {
s := *state
for i := 0; i < len(buffer); i++ {
x := buffer[i]
y := coeff.b0*x + coeff.b1*s.x1 + coeff.b2*s.x2 - coeff.a1*s.y1 - coeff.a2*s.y2
s.x2, s.x1 = s.x1, x
s.y2, s.y1 = s.y1, y
buffer[i] = y
}
*state = s
}
func setSliceLength[T any](slice *[]T, length int) {
if len(*slice) < length {
*slice = append(*slice, make([]T, length-len(*slice))...)
}
*slice = (*slice)[:length]
}
// ref: https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-5-202311-I!!PDF-E.pdf
var oversamplingCoeffs = [4][12]float32{
{0.0017089843750, 0.0109863281250, -0.0196533203125, 0.0332031250000, -0.0594482421875, 0.1373291015625, 0.9721679687500, -0.1022949218750, 0.0476074218750, -0.0266113281250, 0.0148925781250, -0.0083007812500},
{-0.0291748046875, 0.0292968750000, -0.0517578125000, 0.0891113281250, -0.1665039062500, 0.4650878906250, 0.7797851562500, -0.2003173828125, 0.1015625000000, -0.0582275390625, 0.0330810546875, -0.0189208984375},
{-0.0189208984375, 0.0330810546875, -0.058227539062, 0.1015625000000, -0.200317382812, 0.7797851562500, 0.4650878906250, -0.166503906250, 0.0891113281250, -0.051757812500, 0.0292968750000, -0.0291748046875},
{-0.0083007812500, 0.0148925781250, -0.0266113281250, 0.0476074218750, -0.1022949218750, 0.9721679687500, 0.1373291015625, -0.0594482421875, 0.0332031250000, -0.0196533203125, 0.0109863281250, 0.0017089843750},
}
// u[k] = x[k/4] if k%4 == 0, 0 otherwise
// y[k] = sum_{i=0}^{47} h[i] * u[k-i]
// h[i] = o[i%4][i/4]
// k = p*4+q, q=0..3
// y[p*4+q] = sum_{j=0}^{11} sum_{i=0}^{3} h[j*4+i] * u[p*4+q-j*4-i] = ...
// (q-i)%4 == 0 ==> i = q
// ... = sum_{j=0}^{11} o[q][j] * x[p-j]
// y should be at least 4 times the length of x
func (s *oversamplerState) Oversample(x []float32, y []float32) []float32 {
if len(s.tmp) < len(x) {
s.tmp = append(s.tmp, make([]float32, len(x)-len(s.tmp))...)
}
if len(s.tmp2) < len(x) {
s.tmp2 = append(s.tmp2, make([]float32, len(x)-len(s.tmp2))...)
}
for q, coeffs := range oversamplingCoeffs {
// tmp2 will be conv(o[q],x)
r := vek32.Zeros_Into(s.tmp2, len(x))
for j, c := range coeffs {
vek32.MulNumber_Into(s.tmp[:j], s.history[11-j:11], c) // convolution might pull values before x[0], so we need to use history for that
vek32.MulNumber_Into(s.tmp[j:], x[:len(x)-j], c)
vek32.Add_Inplace(r, s.tmp[:len(x)])
}
// interleave the phases
for p, v := range r {
y[p*4+q] = v
}
}
z := min(len(x), 11)
copy(s.history[:11-z], s.history[z:11])
copy(s.history[11-z:], x[len(x)-z:])
return y[:len(x)*4]
}
// we should perform the peak detection also momentary (last 400 ms), short term
// (last 3 s), and integrated (whole song) for display purposes, we can use
// always last arrived data for the integrated peak, we can use the maximum of
// all the peaks so far (there is no need show "maximum short term true peak" or
// "maximum momentary true peak" because they are same as the maximum for entire song)
//
// display:
//
// momentary true peak
// short-term true peak
// integrated true peak
func (d *peakDetector) update(buf sointu.AudioBuffer) (ret PeakResult) {
if len(d.tmp) < len(buf) {
d.tmp = append(d.tmp, make([]float32, len(buf)-len(d.tmp))...)
}
len4 := 4 * len(buf)
if len(d.tmp2) < len4 {
d.tmp2 = append(d.tmp2, make([]float32, len4-len(d.tmp2))...)
}
for chn := 0; chn < 2; chn++ {
// deinterleave the channels
for i := 0; i < len(buf); i++ {
d.tmp[i] = buf[i][chn]
}
// 4x oversample the signal
o := d.states[chn].Oversample(d.tmp[:len(buf)], d.tmp2)
// take absolute value of the oversampled signal
vek32.Abs_Inplace(o)
p := vek32.Max(o)
// find the maximum value in the window
for i := range d.windows {
d.windows[i][chn].WriteWrapSingle(p)
windowPeak := vek32.Max(d.windows[i][chn].Buffer)
ret[chn][i+int(PeakMomentary)] = Decibel(10 * math.Log10(float64(windowPeak)))
}
if d.maxPower[chn] < p {
d.maxPower[chn] = p
}
ret[int(PeakIntegrated)][chn] = Decibel(10 * math.Log10(float64(d.maxPower[chn])))
}
return
}
func (d *peakDetector) reset() {
for chn := 0; chn < 2; chn++ {
d.states[chn].history = [11]float32{}
for i := range d.windows[chn] {
d.windows[chn][i].Cursor = 0
l := len(d.windows[chn][i].Buffer)
d.windows[chn][i].Buffer = d.windows[chn][i].Buffer[:0]
d.windows[chn][i].Buffer = append(d.windows[chn][i].Buffer, make([]float32, l)...)
}
d.maxPower[chn] = 0
}
}