-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdilated.temporal.convolution.go
315 lines (286 loc) · 8.82 KB
/
dilated.temporal.convolution.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
package gortex
import (
"fmt"
"github.com/vseledkin/gortex/assembler"
"strings"
)
type DilatedTemporalConvolution struct {
Kernels [][]*Matrix // any number of layers each having any number of kernels of size input X 3
Biases []*Matrix
ConvBiases []*Matrix
Gates []*Matrix
KernelSizes []int
UseGates bool
inputs [][]*Matrix `json:"-"`
Zeros []*Matrix
}
func MakeDilatedTemporalConvolution(inputSize int, kernelSizes []int, useGates bool) *DilatedTemporalConvolution {
dtc := new(DilatedTemporalConvolution)
dtc.UseGates = useGates
dtc.KernelSizes = kernelSizes
dtc.Kernels = make([][]*Matrix, len(kernelSizes))
if dtc.UseGates {
dtc.Biases = make([]*Matrix, len(kernelSizes))
dtc.Gates = make([]*Matrix, len(kernelSizes))
}
dtc.ConvBiases = make([]*Matrix, len(kernelSizes))
inputSizes := []int{inputSize}
inputSizes = append(inputSizes, kernelSizes...)
dtc.Zeros = make([]*Matrix, len(inputSizes))
for i, n := range kernelSizes {
dtc.Kernels[i] = make([]*Matrix, n)
for j := range dtc.Kernels[i] {
dtc.Kernels[i][j] = RandMatMD(inputSizes[i], 3, 0, 0.1)
}
dtc.ConvBiases[i] = Mat(kernelSizes[i], 1)
if dtc.UseGates {
dtc.Gates[i] = RandMatMD(kernelSizes[i], kernelSizes[i], 0, 0.1)
dtc.Biases[i] = Mat(kernelSizes[i], 1)
}
}
for i, n := range inputSizes {
dtc.Zeros[i] = Mat(n, 1)
}
return dtc
}
func (dtc *DilatedTemporalConvolution) OutputSize() int {
return dtc.KernelSizes[len(dtc.KernelSizes)-1]
}
func (dtc *DilatedTemporalConvolution) Pack(g *Graph, i, layer int, field []int) (ret *Matrix) {
input := make([]*Matrix, len(field))
for i, pos := range field {
if pos >= 0 {
input[i] = dtc.inputs[layer][pos]
} else {
input[i] = dtc.Zeros[layer]
}
}
ret = g.PackColumnVectors(input)
return
}
func (dtc *DilatedTemporalConvolution) ReceptiveField(i, layer int) (field []int) {
L := len(dtc.inputs[layer])
if i < L && i >= 0 {
pow := 1 << uint(layer)
if i > pow-1 {
field = append(field, i-pow)
} else {
field = append(field, -1)
}
field = append(field, i)
if i < L-pow {
field = append(field, i+pow)
} else {
field = append(field, -1)
}
//fmt.Printf("ReceptiveField at Layer: %d at Pos: %d on Len: %d Field: %+v\n", layer, i, L, field)
return
}
panic("wrong attempt to receive valid perceptive field")
}
func (dtc *DilatedTemporalConvolution) SetParameters(namespace string, parameters map[string]*Matrix) error {
for k, v := range dtc.GetParameters(namespace) {
//fmt.Printf("Look for %s parameters\n", k)
if m, ok := parameters[k]; ok {
//fmt.Printf("Got %s parameters\n", k)
copy(v.W, m.W)
} else {
return fmt.Errorf("Model geometry is not compatible, parameter %s is unknown", k)
}
}
return nil
}
func (dtc *DilatedTemporalConvolution) GetParameters(namespace string) map[string]*Matrix {
p := make(map[string]*Matrix)
for layer, kernels := range dtc.Kernels {
for i, kernel := range kernels {
p[fmt.Sprintf("%s_layer%d_kernel%d", namespace, layer, i)] = kernel
}
}
for layer, bias := range dtc.ConvBiases {
p[fmt.Sprintf("%s_layer%d_conv_bias", namespace, layer)] = bias
}
if dtc.UseGates {
for layer, bias := range dtc.Biases {
p[fmt.Sprintf("%s_layer%d_bias", namespace, layer)] = bias
}
for layer, wo := range dtc.Gates {
p[fmt.Sprintf("%s_layer%d_wo", namespace, layer)] = wo
}
}
//p[fmt.Sprintf("%s_Wo", namespace)] = dtc.Gates
return p
}
func (dtc *DilatedTemporalConvolution) Layers() int {
return len(dtc.Kernels)
}
func (dtc *DilatedTemporalConvolution) Len() int {
return len(dtc.inputs[0])
}
func (dtc *DilatedTemporalConvolution) Print(pos int) {
L := dtc.Layers() - 1
pattern := make([][]interface{}, dtc.Layers()+1)
for i := range pattern {
pattern[i] = make([]interface{}, dtc.Len())
for j := range pattern[i] {
pattern[i][j] = ""
}
}
pattern[L+1][pos] = fmt.Sprintf("%d", pos)
dtc.print(L, pos, pattern)
fmt.Printf("Pos: %d Len: %d\n", pos, dtc.Len())
for l := len(pattern) - 1; l >= 0; l -- {
pattern[l] = append(pattern[l], l)
fmt.Printf(strings.Repeat("%6s", dtc.Len())+"\t|L: %6d\n", pattern[l]...)
}
fmt.Println()
}
func (dtc *DilatedTemporalConvolution) print(layer, pos int, pattern [][]interface{}) {
for _, f := range dtc.ReceptiveField(pos, layer) {
if f >= 0 {
pattern[layer][f] = fmt.Sprintf("%d", f)
if layer > 0 {
dtc.print(layer-1, f, pattern)
}
}
}
}
func (dtc *DilatedTemporalConvolution) Check() {
// check that second layer looks at the start of sequence
L := len(dtc.inputs[0])
for pos := range dtc.inputs[1] {
if dtc.inputs[1][pos] != nil {
field := dtc.ReceptiveField(pos, 0)
hasZero := false
for _, f := range field {
if f == 0 {
hasZero = true
break
}
}
if !hasZero {
panic(fmt.Errorf("insufficient attention range %+v for sequence of %d elements pos %d at start", field, L, pos))
}
break
}
}
// check that second layer looks at the end of sequence
for pos := L - 1; pos >= 0; pos-- {
if dtc.inputs[1][pos] != nil {
field := dtc.ReceptiveField(pos, 0)
hasZero := false
for _, f := range field {
if f == L-1 {
hasZero = true
break
}
}
if !hasZero {
panic(fmt.Errorf("insufficient attention range %+v for sequence of %d elements pos %d at end", field, L, pos))
}
break
}
}
}
func (dtc *DilatedTemporalConvolution) LayerAttentionWidth(layer int) int {
return 2<<uint(layer+1) - 1
}
func (dtc *DilatedTemporalConvolution) MaxAttentionWidth() int {
return dtc.LayerAttentionWidth(len(dtc.Kernels) - 1)
}
func (dtc *DilatedTemporalConvolution) LookFullStep(g *Graph, layer, t int) {
//fmt.Printf("LookFullStep Layer: %d Pos: %d\n", layer, t)
// check if we have already computed nessesary outputs
if dtc.inputs[layer+1][t] == nil { // if not
field := dtc.ReceptiveField(t, layer)
if layer > 0 {
// run recursion for every position which value is not calculated yet
for _, pos := range field {
if pos >= 0 && dtc.inputs[layer][pos] == nil {
dtc.LookFullStep(g, layer-1, pos) // recursion!!!!!
}
}
}
// now we have all inputs ready
// pack inputs from lover layers
input := dtc.Pack(g, t, layer, field)
//log.Printf("layer %d step %d input %+v", layer, t, field)
layerKernels := dtc.Kernels[layer]
output := make([]*Matrix, len(layerKernels))
for i := range layerKernels {
output[i] = g.Conv(input, layerKernels[i])
}
conv_output := g.Selu(g.Add(g.Concat(output...), dtc.ConvBiases[layer]))
if dtc.UseGates {
dtc.inputs[layer+1][t] = g.Selu(g.Add(g.Mul(dtc.Gates[layer], conv_output), dtc.Biases[layer]))
} else {
dtc.inputs[layer+1][t] = conv_output
}
//fmt.Printf("Put LookFullStep Layer: %d Pos: %d for layer %d\n", layer, t, layer+1)
} //else {
//fmt.Printf("Ready LookFullStep Layer: %d Pos: %d\n", layer, t)
//}
return
}
func (dtc *DilatedTemporalConvolution) lookPastStep(g *Graph, layer, t int) {
// check if we have already computed nessesary outputs
if dtc.inputs[layer+1][t] == nil { // if not
// run recursion to calculate all nessesry prerequisites from lower layers
field := dtc.ReceptiveField(t, layer)
if layer > 0 {
// run recursion for every position which value is not calculated yet
for _, pos := range field {
if dtc.inputs[layer][pos] == nil {
dtc.LookFullStep(g, layer-1, pos) // reqcursion!!!!!
}
}
}
// now we have all inputs ready
// pack inputs from lover layers
input := dtc.Pack(g, t, layer, field)
// get receptive field for conv neuron
//_, input := dtc.ReceptiveField(g, t, layer, dtc.inputs[layer][:t+1])
//log.Printf("layer %d step %d input %+v", layer, t, field)
layerKernels := dtc.Kernels[layer]
output := make([]*Matrix, len(layerKernels))
for i := range layerKernels {
output[i] = g.Conv(input, layerKernels[i])
}
dtc.inputs[layer+1][t] = g.Tanh(g.Add(g.Concat(output...), dtc.Biases[layer]))
}
return
}
func (dtc *DilatedTemporalConvolution) SetInput(input []*Matrix) {
dtc.inputs = nil
dtc.inputs = make([][]*Matrix, len(dtc.Kernels)+1)
dtc.inputs[0] = input
for i := range dtc.Kernels {
dtc.inputs[i+1] = make([]*Matrix, len(input))
}
for i := range dtc.Zeros {
assembler.Sclean(dtc.Zeros[i].DW)
}
}
func (dtc *DilatedTemporalConvolution) AddInput(inp *Matrix) {
dtc.inputs[0] = append(dtc.inputs[0], inp)
for i := range dtc.Kernels {
dtc.inputs[i+1] = append(dtc.inputs[i+1], nil)
}
}
func (dtc *DilatedTemporalConvolution) LookPastStep(g *Graph, t int) (y *Matrix) {
L := len(dtc.Kernels) - 1
if dtc.inputs[L][t] == nil { // if inputs are not ready
dtc.lookPastStep(g, L, t)
}
return dtc.inputs[L+1][t]
}
func (dtc *DilatedTemporalConvolution) FullStep(g *Graph, t int) (y *Matrix) {
//fmt.Printf("FullStep Pos: %d\n", t)
L := len(dtc.Kernels) - 1
if dtc.inputs[L+1][t] == nil { // if inputs are not ready
dtc.LookFullStep(g, L, t)
} //else {
// fmt.Printf("FullStep Ready Pos: %d\n", t)
//}
return dtc.inputs[L+1][t]
}