-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgortex.go
317 lines (279 loc) · 6.39 KB
/
gortex.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
package gortex
import "math"
import (
"encoding/json"
"fmt"
"github.com/vseledkin/gortex/assembler"
"math/rand"
"os"
"time"
)
func init() {
rand.Seed(time.Now().UTC().UnixNano())
}
func Abs(f float32) float32 {
if f < 0 {
return -f
}
return f
}
func Max(x, y float32) float32 {
if x < y {
return y
}
return x
}
func MaxInt(x, y int) int {
if x < y {
return y
}
return x
}
func MinInt(x, y int) int {
if x > y {
return y
}
return x
}
func Pow(x, y float32) float32 {
return float32(math.Pow(float64(x), float64(y)))
}
func Zeros(n int) []float32 {
return make([]float32, n)
}
func ScaleGradient(model map[string]*Matrix, v float32) {
for _, m := range model {
assembler.Sscale(v, m.DW)
}
}
func PrintGradient(model map[string]*Matrix) {
for k, m := range model {
fmt.Printf("Grad: %s %f %f\n", k, m.Norm(), m.NormGradient())
}
}
func PrintZeroGradient(model map[string]*Matrix) {
for k, m := range model {
wnorm := m.Norm()
gnorm := m.NormGradient()
if wnorm == 0 {
fmt.Printf("\033[93mWarning!!! Weights of %s = %f\033[0m\n", k, wnorm)
}
if gnorm == 0 {
fmt.Printf("\033[93mWarning!!! Gradients of %s = %f\033[0m\n", k, gnorm)
}
}
}
func NormalizeToUnitLength(m *Matrix) {
assembler.Sscale(1/assembler.L2(m.W), m.W)
}
func InitWeights(model map[string]*Matrix, dev float32) {
for _, m := range model {
for i := range m.W {
m.W[i] = dev * float32(rand.NormFloat64()) // standard normal distribution (mean = 0, stddev = 1)
}
}
}
func ResetGradients(model map[string]*Matrix) {
for _, m := range model {
assembler.Sclean(m.DW)
}
}
//Softmax probability distribution interpretation of any vector/matrix
func Softmax(m *Matrix) *Matrix {
out := Mat(m.Rows, m.Columns) // probability volume
maxval := m.W[assembler.Ismax(m.W)]
for i := range m.W {
out.W[i] = float32(math.Exp(float64(m.W[i] - maxval)))
}
sum := assembler.Sum(out.W)
assembler.Sscale(1/(sum+1e-7), out.W)
// no backward pass here needed
// since we will use the computed probabilities outside
// to set gradients directly on m
return out
}
//Softmax probability distribution interpretation of any vector/matrix
func SoftmaxT(m *Matrix, T float32) *Matrix {
out := Mat(m.Rows, m.Columns) // probability volume
if T <= 0 {
panic("Wrong temperture value, must be (0,Inf)")
}
assembler.Sscale(1/T, m.W)
maxval := m.W[assembler.Ismax(m.W)]
for i := range m.W {
out.W[i] = float32(math.Exp(float64(m.W[i] - maxval)))
}
sum := assembler.Sum(out.W)
assembler.Sscale(1/(sum+1e-7), out.W)
// no backward pass here needed
// since we will use the computed probabilities outside
// to set gradients directly on m
return out
}
// Take elementwise exponent of x
func Exp(x *Matrix) *Matrix {
out := Mat(x.Rows, x.Columns)
for i := range x.W {
out.W[i] = float32(math.Exp(float64(x.W[i])))
}
return out
}
func Moments(m *Matrix) (mean, variance float32) {
mean = assembler.Sum(m.W) / float32(len(m.W))
var total float32
var tmp float32
for i := range m.W {
tmp = m.W[i] - mean
total += tmp * tmp
}
variance = total / float32(len(m.W))
return
}
func MaxIV(m *Matrix) (maxIndex uint, max float32) {
max = -math.MaxFloat32
for i, v := range m.W {
if v > max {
max = v
maxIndex = uint(i)
}
}
return
}
func Multinomial(probabilities *Matrix) uint {
if probabilities.Columns != 1 {
panic(fmt.Errorf("Input must be vector"))
}
offset := float32(0)
sample := rand.Float32()
for i, p := range probabilities.W {
offset += p
//sample uniform from [0,1]
if sample <= offset {
return uint(i)
}
}
return uint(len(probabilities.W) - 1)
}
func SaveModel(name string, m map[string]*Matrix) error {
// save MODEL_NAME
f, err := os.Create(name)
if err != nil {
return err
}
defer f.Close()
encoder := json.NewEncoder(f)
err = encoder.Encode(m)
if err != nil {
return err
}
return nil
}
func LoadModel(name string) (map[string]*Matrix, error) {
if len(name) == 0 {
return nil, fmt.Errorf("No model file provided! [%s]", name)
}
//fmt.Printf("Loading learned model %s\n", name)
f, e := os.Open(name)
if e != nil {
return nil, e
}
defer f.Close()
var m map[string]*Matrix
decoder := json.NewDecoder(f)
err := decoder.Decode(&m)
if err != nil {
return nil, err
}
return m, nil
}
func F1Score(trueLabels, predictedLabels []uint, str []string, excludes map[uint]bool) (float64, string) {
if len(trueLabels) != len(predictedLabels) {
panic(fmt.Errorf("Number of true labels %d and predicted ones %d must match", len(trueLabels), len(predictedLabels)))
}
f := make(map[uint]*struct {
tp, fp, fn, p, r, f, c float64
})
for i := range trueLabels {
m, ok := f[trueLabels[i]]
if !ok {
m = new(struct {
tp, fp, fn, p, r, f, c float64
})
f[trueLabels[i]] = m
}
m.c++
if trueLabels[i] > uint(len(str)-1) {
panic(fmt.Errorf("No name for true label %d given", trueLabels[i]))
}
}
// do the same for predicted labels
for i := range predictedLabels {
m, ok := f[predictedLabels[i]]
if !ok {
m = new(struct {
tp, fp, fn, p, r, f, c float64
})
f[predictedLabels[i]] = m
}
if predictedLabels[i] > uint(len(str)-1) {
panic(fmt.Errorf("No name for predicted label %d given", predictedLabels[i]))
}
}
var maxlabel uint
for i := range trueLabels {
x := trueLabels[i]
y := predictedLabels[i]
if x == y {
f[x].tp++
} else {
f[x].fn++
f[y].fp++
}
if maxlabel < x {
maxlabel = x
}
if maxlabel < y {
maxlabel = y
}
}
var F float64
ff := make([]*struct {
tp, fp, fn, p, r, f, c float64
}, maxlabel+1)
for l, m := range f {
ff[l] = m
}
var denominator float64
var message string
for l, m := range ff {
if m != nil && !excludes[uint(l)] {
m.p = m.tp / (m.tp + m.fp)
if math.IsNaN(m.p) {
m.p = 0
}
m.r = m.tp / (m.tp + m.fn)
m.f = 2.0 * m.p * m.r / (m.r + m.p)
if math.IsNaN(m.f) {
m.f = 0
}
message += fmt.Sprintf("label:%d-[%s] Count:%.1f tp:%.1f fn:%.1f fp:%.1f p:%f r:%f f:%f\n", l, str[l], m.c, m.tp, m.fn, m.fp, m.p, m.r, m.f)
F += m.c * m.f
denominator += float64(m.c)
}
}
F /= denominator
return F, message
}
func SetParameters(dest, parameters map[string]*Matrix) error {
for k, v := range dest {
if m, ok := parameters[k]; ok {
copy(v.W, m.W)
} else {
return fmt.Errorf("Model geometry is not compatible, parameter %s is unknown", k)
}
}
return nil
}
func Sigmoid(shift, x float32) float32 {
return float32(1 / (1 + math.Exp(float64(shift-x))))
}