-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimizer.go
282 lines (261 loc) · 7.33 KB
/
optimizer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
package gortex
import (
"math"
"log"
"github.com/vseledkin/gortex/assembler"
)
type OpMethod int
const (
SGD OpMethod = iota
ADAM
RMSPROP
ADAGRAD
ADADELTA
WINDOWGRAD
NETSTEROV
POWERBALL
POWERSIGN
ADDSIGN
)
const (
DefaultMomentum = 0.9
)
type OpOp struct {
LearningRate float32
L1Decay float32
L2Decay float32
RmsDecayRate float32
Momentum float32
Ro float32 // used by adadelta
Eps float32 // used by adadelta and adam
Beta1 float32 // used by adam
Beta2 float32 // used by adam
Clip float32 // used by all
Method OpMethod
Powerball float32
Debug bool
Beta float32
Alpha float32
}
type OpRet struct {
L1Loss float32
L2Loss float32
NumClipped int
}
type Optimizer struct {
OpOp
PreviousGradient map[string][]float32 // previous iteration gradients (used for momentum calculations)
PreviousWeight map[string][]float32 // previous iteration weight (used by adadelta)
Iteration float32
}
func NewOptimizer(ops OpOp) *Optimizer {
op := new(Optimizer)
op.PreviousGradient = make(map[string][]float32)
op.PreviousWeight = make(map[string][]float32)
op.OpOp = ops
if op.LearningRate == 0 {
op.LearningRate = 0.01
}
if op.Ro == 0 {
op.Ro = 0.95
}
if op.Eps == 0 {
op.Eps = 1e-8
}
if op.Beta1 == 0 {
op.Beta1 = 0.9
}
if op.Beta2 == 0 {
op.Beta2 = 0.999
}
if op.RmsDecayRate == 0 {
op.RmsDecayRate = 0.999
}
if op.Momentum == 0 && op.Method == NETSTEROV {
panic("Nesterov assumes momentum is positive!")
}
if op.Powerball == 0 {
op.Powerball = 0.1
}
if op.Alpha == 0 {
op.Alpha = 1.0
}
if op.Beta == 0 {
op.Powerball = 0.9
}
return op
}
func (o *Optimizer) getPreviousGradient(name string, m *Matrix) []float32 {
previousGradient, ok := o.PreviousGradient[name]
if !ok {
previousGradient = make([]float32, m.Numel())
o.PreviousGradient[name] = previousGradient
}
return previousGradient
}
func (o *Optimizer) setPreviousGradient(name string, g []float32) {
o.PreviousGradient[name] = g
}
func (o *Optimizer) getPreviousWeight(name string, m *Matrix) []float32 {
previousWeight, ok := o.PreviousWeight[name]
if !ok {
previousWeight = make([]float32, m.Numel())
o.PreviousWeight[name] = previousWeight
}
return previousWeight
}
func (o *Optimizer) setPreviousWeight(name string, w []float32) {
o.PreviousWeight[name] = w
}
func (o *Optimizer) clip(w []float32) int {
var num_clipped int
// gradient clip
for i := range w {
if w[i] > o.Clip {
w[i] = o.Clip
num_clipped++
continue
}
if w[i] < -o.Clip {
w[i] = -o.Clip
num_clipped++
}
}
return num_clipped
}
func sign(w float32) float32 {
if w >= 0 {
return 1
}
return -1
}
func (o *Optimizer) Step(model map[string]*Matrix) OpRet {
ret := OpRet{}
// make method specific weight optimization
o.Iteration++
for name, m := range model {
if o.Clip > 0 {
ret.NumClipped += o.clip(m.DW)
}
if o.L1Decay > 0 {
for i := range m.W {
m.DW[i] += o.L1Decay * sign(m.W[i])
}
}
if o.L2Decay > 0 {
assembler.Saxpy(o.L2Decay, m.W, m.DW)
}
if o.Debug && assembler.L2(m.DW) == 0 {
log.Printf("WARNING: %s W:%f DW:%f\n", name, assembler.L2(m.W), assembler.L2(m.DW))
}
switch o.Method {
case RMSPROP:
xsumi := o.getPreviousWeight(name, m)
assembler.Saxplusbyvsetz(o.RmsDecayRate, xsumi, 1-o.RmsDecayRate, m.DW, m.DW, xsumi)
if o.Iteration > 10 {
assembler.Saxdivsqrteyplusz(-o.LearningRate, m.DW, o.Eps, xsumi, m.W)
}
case ADAM:
gsumi := o.getPreviousGradient(name, m)
xsumi := o.getPreviousWeight(name, m)
assembler.Saxplusbysetz(o.Beta1, gsumi, 1-o.Beta1, m.DW, gsumi) // update biased first moment estimate
assembler.Saxplusbyvsetz(o.Beta2, xsumi, 1-o.Beta2, m.DW, m.DW, xsumi) // update biased second moment estimate
beta1iteration := (1 - Pow(o.Beta1, o.Iteration))
beta2iteration := (1 - Pow(o.Beta2, o.Iteration))
biasCorr1 := make([]float32, m.Numel())
biasCorr2 := make([]float32, m.Numel())
assembler.Saxpy(beta1iteration, gsumi, biasCorr1) // correct bias first moment estimate
assembler.Saxpy(beta2iteration, xsumi, biasCorr2) // correct bias second moment estimate
if o.Iteration > 10 {
assembler.Saxdivsqrteyplusz(-o.LearningRate, biasCorr1, o.Eps, biasCorr2, m.W)
}
case ADAGRAD:
gsumi := o.getPreviousGradient(name, m)
assembler.Sxmuleyplusz(m.DW, m.DW, gsumi)
assembler.Saxdivsqrteyplusz(-o.LearningRate, m.DW, o.Eps, gsumi, m.W)
case WINDOWGRAD:
// this is adagrad but with a moving window weighted average
// so the gradient is not accumulated over the entire history of the run.
gsumi := o.getPreviousGradient(name, m)
assembler.Saxplusbyvsetz(o.Ro, gsumi, 1-o.Ro, m.DW, m.DW, gsumi)
assembler.Saxdivsqrteyplusz(-o.LearningRate, m.DW, o.Eps, gsumi, m.W)
case ADADELTA:
gsumi := o.getPreviousGradient(name, m)
xsumi := o.getPreviousWeight(name, m)
assembler.Saxplusbyvsetz(o.Ro, gsumi, 1-o.Ro, m.DW, m.DW, gsumi)
for i := range m.W {
dx := -assembler.Sqrt((xsumi[i] + o.Eps) / (gsumi[i] + o.Eps)) * m.DW[i]
xsumi[i] = o.Ro*xsumi[i] + (1-o.Ro)*dx*dx
m.W[i] += dx
}
case NETSTEROV:
dx := o.getPreviousGradient(name, m)
gsumi := make([]float32, m.Numel())
assembler.Saxplusbysetz(o.Momentum, dx, o.LearningRate, m.DW, gsumi)
assembler.Saxplusbyplusz(o.Momentum, dx, -(1 + o.Momentum), gsumi, m.W)
o.setPreviousGradient(name, gsumi)
case POWERBALL:
if o.Momentum > 0 {
dx := o.getPreviousGradient(name, m)
for i := range m.DW {
m.DW[i] = sign(m.DW[i]) * float32(math.Pow(float64(Abs(m.DW[i])), float64(o.Powerball)))
}
assembler.Saxplusbysetz(o.Momentum, dx, -o.LearningRate, m.DW, dx)
// apply corrected gradient
assembler.Sxpy(dx, m.W)
} else {
for i := range m.DW {
m.DW[i] = sign(m.DW[i]) * float32(math.Pow(float64(Abs(m.DW[i])), float64(o.Powerball)))
}
assembler.Saxpy(-o.LearningRate, m.DW, m.W)
}
case POWERSIGN:
gsumi := o.getPreviousGradient(name, m)
assembler.Saxplusbysetz(o.Beta, gsumi, 1-o.Beta, m.DW, gsumi)
update := o.getPreviousWeight(name,m)
for i := range m.W {
update[i] = float32(math.Exp(float64(sign(gsumi[i])*sign(m.DW[i])))) * m.DW[i]
}
assembler.Saxpy(-o.LearningRate, update, m.W)
/*
t <- t + 1
m_t <- beta1 * m_{t-1} + (1 - beta1) * g
sign_decay <- sign_decay_fn(t)
update <- base ** (sign_decay * sign(g) * sign(m)) * g
variable <- variable - lr_t * update
*/
case ADDSIGN:
gsumi := o.getPreviousGradient(name, m)
assembler.Saxplusbysetz(o.Beta, gsumi, 1-o.Beta, m.DW, gsumi)
update := o.getPreviousWeight(name,m)
for i := range m.W {
update[i] = (o.Alpha + sign(gsumi[i])*sign(m.DW[i])) * m.DW[i]
}
assembler.Saxpy(-o.LearningRate, update, m.W)
/*
t <- t + 1
m_t <- beta1 * m_{t-1} + (1 - beta1) * g
sign_decay <- sign_decay_fn(t)
update <- (alpha + sign_decay * sign(g) *sign(m)) * g
variable <- variable - lr_t * update
*/
case SGD:
if o.Momentum > 0 {
dx := o.getPreviousGradient(name, m)
assembler.Saxplusbysetz(o.Momentum, dx, -o.LearningRate, m.DW, dx)
// apply corrected gradient
assembler.Sxpy(dx, m.W)
} else {
// vanilla sgd no momentum
assembler.Saxpy(-o.LearningRate, m.DW, m.W)
}
default:
panic("Not implemented")
}
}
// reset gradients
for _, m := range model {
assembler.Sclean(m.DW)
}
return ret
}