-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrnn.multiplicative.nested.lstm.go
128 lines (97 loc) · 3.1 KB
/
rnn.multiplicative.nested.lstm.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
package gortex
import (
"fmt"
"github.com/vseledkin/gortex/assembler"
)
// Long Short Term Memory cell
type MultiplicativeNestedLSTM struct {
Wmx *Matrix
Umh *Matrix
Wf *Matrix
Uf *Matrix
Bf *Matrix
Wi *Matrix
Ui *Matrix
Bi *Matrix
Wo *Matrix
Uo *Matrix
Bo *Matrix
Wc *Matrix
Uc *Matrix
Bc *Matrix
Who *Matrix
innerMemory *MultiplicativeLSTM
}
func (lstm *MultiplicativeNestedLSTM) ForgetGateTrick(v float32) {
if lstm.Bf != nil {
assembler.Sset(v, lstm.Bf.W)
}
}
func MakeMultiplicativeNestedLSTM(x_size, h_size, out_size int) *MultiplicativeNestedLSTM {
rnn := new(MultiplicativeNestedLSTM)
rnn.Wmx = RandXavierMat(h_size, x_size)
rnn.Umh = RandXavierMat(h_size, h_size)
rnn.Wf = RandXavierMat(h_size, x_size)
rnn.Uf = RandXavierMat(h_size, h_size)
rnn.Bf = RandXavierMat(h_size, 1) // forget gate bias initialization trick will be applied here
rnn.Wi = RandXavierMat(h_size, x_size)
rnn.Ui = RandXavierMat(h_size, h_size)
rnn.Bi = RandXavierMat(h_size, 1)
rnn.Wo = RandXavierMat(h_size, x_size)
rnn.Uo = RandXavierMat(h_size, h_size)
rnn.Bo = RandXavierMat(h_size, 1)
rnn.Wc = RandXavierMat(h_size, x_size)
rnn.Uc = RandXavierMat(h_size, h_size)
rnn.Bc = RandXavierMat(h_size, 1)
rnn.Who = RandXavierMat(out_size, h_size)
rnn.innerMemory = MakeMultiplicativeLSTM(h_size, h_size, h_size)
return rnn
}
func (rnn *MultiplicativeNestedLSTM) GetParameters(namespace string) map[string]*Matrix {
params := map[string]*Matrix{
namespace + "_Wmx": rnn.Wmx,
namespace + "_Umh": rnn.Umh,
namespace + "_Wf": rnn.Wf,
namespace + "_Uf": rnn.Uf,
namespace + "_Bf": rnn.Bf,
namespace + "_Wi": rnn.Wi,
namespace + "_Ui": rnn.Ui,
namespace + "_Bi": rnn.Bi,
namespace + "_Wo": rnn.Wo,
namespace + "_Uo": rnn.Uo,
namespace + "_Bo": rnn.Bo,
namespace + "_Wc": rnn.Wc,
namespace + "_Uc": rnn.Uc,
namespace + "_Bc": rnn.Bc,
namespace + "_Who": rnn.Who,
}
for k, v := range rnn.innerMemory.GetParameters(namespace + "_inner") {
params[k] = v
}
return params
}
func (rnn *MultiplicativeNestedLSTM) SetParameters(namespace string, parameters map[string]*Matrix) error {
for k, v := range rnn.GetParameters(namespace) {
fmt.Printf("Look for %s parameters\n", k)
if m, ok := parameters[k]; ok {
fmt.Printf("Got %s parameters\n", k)
copy(v.W, m.W)
} else {
return fmt.Errorf("Model geometry is not compatible, parameter %s is unknown", k)
}
}
return nil
}
func (rnn *MultiplicativeNestedLSTM) Step(g *Graph, x, h_prev, c_prev, c_previn *Matrix) (h, c, cin, y *Matrix) {
// make MultiplicativeLSTM computation graph at one time-step
m := g.EMul(g.Mul(rnn.Wmx, x), g.Mul(rnn.Umh, h_prev))
f := g.Sigmoid(g.Add(g.Add(g.Mul(rnn.Wf, x), g.Mul(rnn.Uf, m)), rnn.Bf))
i := g.Sigmoid(g.Add(g.Add(g.Mul(rnn.Wi, x), g.Mul(rnn.Ui, m)), rnn.Bi))
o := g.Sigmoid(g.Add(g.Add(g.Mul(rnn.Wo, x), g.Mul(rnn.Uo, m)), rnn.Bo))
c = g.Tanh(g.Add(g.Add(g.Mul(rnn.Wc, x), g.Mul(rnn.Uc, m)), rnn.Bc))
//c = g.Add(g.EMul(f, c_prev), g.EMul(i, c))
c_new, cin, _ := rnn.innerMemory.Step(g, g.EMul(i, c), g.EMul(f, c_prev), c_previn)
h = g.EMul(o, g.Tanh(c_new))
y = g.Mul(rnn.Who, h)
return
}