-
Notifications
You must be signed in to change notification settings - Fork 60
/
custom_layers.py
195 lines (149 loc) · 6.99 KB
/
custom_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import geometry
import torchvision
import util
from pytorch_prototyping import pytorch_prototyping
import torch
from torch import nn
def init_recurrent_weights(self):
for m in self.modules():
if type(m) in [nn.GRU, nn.LSTM, nn.RNN]:
for name, param in m.named_parameters():
if 'weight_ih' in name:
nn.init.kaiming_normal_(param.data)
elif 'weight_hh' in name:
nn.init.orthogonal_(param.data)
elif 'bias' in name:
param.data.fill_(0)
def lstm_forget_gate_init(lstm_layer):
for name, parameter in lstm_layer.named_parameters():
if not "bias" in name: continue
n = parameter.size(0)
start, end = n // 4, n // 2
parameter.data[start:end].fill_(1.)
def clip_grad_norm_hook(x, max_norm=10):
total_norm = x.norm()
total_norm = total_norm ** (1 / 2.)
clip_coef = max_norm / (total_norm + 1e-6)
if clip_coef < 1:
return x * clip_coef
class DepthSampler(nn.Module):
def __init__(self):
super().__init__()
def forward(self,
xy,
depth,
cam2world,
intersection_net,
intrinsics):
self.logs = list()
batch_size, _, _ = cam2world.shape
intersections = geometry.world_from_xy_depth(xy=xy, depth=depth, cam2world=cam2world, intrinsics=intrinsics)
depth = geometry.depth_from_world(intersections, cam2world)
if self.training:
print(depth.min(), depth.max())
return intersections, depth
class Raymarcher(nn.Module):
def __init__(self,
num_feature_channels,
raymarch_steps):
super().__init__()
self.n_feature_channels = num_feature_channels
self.steps = raymarch_steps
hidden_size = 16
self.lstm = nn.LSTMCell(input_size=self.n_feature_channels,
hidden_size=hidden_size)
self.lstm.apply(init_recurrent_weights)
lstm_forget_gate_init(self.lstm)
self.out_layer = nn.Linear(hidden_size, 1)
self.counter = 0
def forward(self,
cam2world,
phi,
uv,
intrinsics):
batch_size, num_samples, _ = uv.shape
log = list()
ray_dirs = geometry.get_ray_directions(uv,
cam2world=cam2world,
intrinsics=intrinsics)
initial_depth = torch.zeros((batch_size, num_samples, 1)).normal_(mean=0.05, std=5e-4).cuda()
init_world_coords = geometry.world_from_xy_depth(uv,
initial_depth,
intrinsics=intrinsics,
cam2world=cam2world)
world_coords = [init_world_coords]
depths = [initial_depth]
states = [None]
for step in range(self.steps):
v = phi(world_coords[-1])
state = self.lstm(v.view(-1, self.n_feature_channels), states[-1])
if state[0].requires_grad:
state[0].register_hook(lambda x: x.clamp(min=-10, max=10))
signed_distance = self.out_layer(state[0]).view(batch_size, num_samples, 1)
new_world_coords = world_coords[-1] + ray_dirs * signed_distance
states.append(state)
world_coords.append(new_world_coords)
depth = geometry.depth_from_world(world_coords[-1], cam2world)
if self.training:
print("Raymarch step %d: Min depth %0.6f, max depth %0.6f" %
(step, depths[-1].min().detach().cpu().numpy(), depths[-1].max().detach().cpu().numpy()))
depths.append(depth)
if not self.counter % 100:
# Write tensorboard summary for each step of ray-marcher.
drawing_depths = torch.stack(depths, dim=0)[:, 0, :, :]
drawing_depths = util.lin2img(drawing_depths).repeat(1, 3, 1, 1)
log.append(('image', 'raycast_progress',
torch.clamp(torchvision.utils.make_grid(drawing_depths, scale_each=False, normalize=True), 0.0,
5),
100))
# Visualize residual step distance (i.e., the size of the final step)
fig = util.show_images([util.lin2img(signed_distance)[i, :, :, :].detach().cpu().numpy().squeeze()
for i in range(batch_size)])
log.append(('figure', 'stopping_distances', fig, 100))
self.counter += 1
return world_coords[-1], depths[-1], log
class DeepvoxelsRenderer(nn.Module):
def __init__(self,
nf0,
in_channels,
input_resolution,
img_sidelength):
super().__init__()
self.nf0 = nf0
self.in_channels = in_channels
self.input_resolution = input_resolution
self.img_sidelength = img_sidelength
self.num_down_unet = util.num_divisible_by_2(input_resolution)
self.num_upsampling = util.num_divisible_by_2(img_sidelength) - self.num_down_unet
self.build_net()
def build_net(self):
self.net = [
pytorch_prototyping.Unet(in_channels=self.in_channels,
out_channels=3 if self.num_upsampling <= 0 else 4 * self.nf0,
outermost_linear=True if self.num_upsampling <= 0 else False,
use_dropout=True,
dropout_prob=0.1,
nf0=self.nf0 * (2 ** self.num_upsampling),
norm=nn.BatchNorm2d,
max_channels=8 * self.nf0,
num_down=self.num_down_unet)
]
if self.num_upsampling > 0:
self.net += [
pytorch_prototyping.UpsamplingNet(per_layer_out_ch=self.num_upsampling * [self.nf0],
in_channels=4 * self.nf0,
upsampling_mode='transpose',
use_dropout=True,
dropout_prob=0.1),
pytorch_prototyping.Conv2dSame(self.nf0, out_channels=self.nf0 // 2, kernel_size=3, bias=False),
nn.BatchNorm2d(self.nf0 // 2),
nn.ReLU(True),
pytorch_prototyping.Conv2dSame(self.nf0 // 2, 3, kernel_size=3)
]
self.net += [nn.Tanh()]
self.net = nn.Sequential(*self.net)
def forward(self, input):
batch_size, _, ch = input.shape
input = input.permute(0, 2, 1).view(batch_size, ch, self.img_sidelength, self.img_sidelength)
out = self.net(input)
return out.view(batch_size, 3, -1).permute(0, 2, 1)