-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathsrns.py
311 lines (243 loc) · 12.6 KB
/
srns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import torch
import torch.nn as nn
import numpy as np
import torchvision
import util
import skimage.measure
from torch.nn import functional as F
from pytorch_prototyping import pytorch_prototyping
import custom_layers
import geometry
import hyperlayers
class SRNsModel(nn.Module):
def __init__(self,
num_instances,
latent_dim,
tracing_steps,
has_params=False,
fit_single_srn=False,
use_unet_renderer=False,
freeze_networks=False):
super().__init__()
self.latent_dim = latent_dim
self.has_params = has_params
self.num_hidden_units_phi = 256
self.phi_layers = 4 # includes the in and out layers
self.rendering_layers = 5 # includes the in and out layers
self.sphere_trace_steps = tracing_steps
self.freeze_networks = freeze_networks
self.fit_single_srn = fit_single_srn
if self.fit_single_srn: # Fit a single scene with a single SRN (no hypernetworks)
self.phi = pytorch_prototyping.FCBlock(hidden_ch=self.num_hidden_units_phi,
num_hidden_layers=self.phi_layers - 2,
in_features=3,
out_features=self.num_hidden_units_phi)
else:
# Auto-decoder: each scene instance gets its own code vector z
self.latent_codes = nn.Embedding(num_instances, latent_dim).cuda()
nn.init.normal_(self.latent_codes.weight, mean=0, std=0.01)
self.hyper_phi = hyperlayers.HyperFC(hyper_in_ch=self.latent_dim,
hyper_num_hidden_layers=1,
hyper_hidden_ch=self.latent_dim,
hidden_ch=self.num_hidden_units_phi,
num_hidden_layers=self.phi_layers - 2,
in_ch=3,
out_ch=self.num_hidden_units_phi)
self.ray_marcher = custom_layers.Raymarcher(num_feature_channels=self.num_hidden_units_phi,
raymarch_steps=self.sphere_trace_steps)
if use_unet_renderer:
self.pixel_generator = custom_layers.DeepvoxelsRenderer(nf0=32, in_channels=self.num_hidden_units_phi,
input_resolution=128, img_sidelength=128)
else:
self.pixel_generator = pytorch_prototyping.FCBlock(hidden_ch=self.num_hidden_units_phi,
num_hidden_layers=self.rendering_layers - 1,
in_features=self.num_hidden_units_phi,
out_features=3,
outermost_linear=True)
if self.freeze_networks:
all_network_params = (list(self.pixel_generator.parameters())
+ list(self.ray_marcher.parameters())
+ list(self.hyper_phi.parameters()))
for param in all_network_params:
param.requires_grad = False
# Losses
self.l2_loss = nn.MSELoss(reduction="mean")
# List of logs
self.logs = list()
print(self)
print("Number of parameters:")
util.print_network(self)
def get_regularization_loss(self, prediction, ground_truth):
"""Computes regularization loss on final depth map (L_{depth} in eq. 6 in paper)
:param prediction (tuple): Output of forward pass.
:param ground_truth: Ground-truth (unused).
:return: Regularization loss on final depth map.
"""
_, depth = prediction
neg_penalty = (torch.min(depth, torch.zeros_like(depth)) ** 2)
return torch.mean(neg_penalty) * 10000
def get_image_loss(self, prediction, ground_truth):
"""Computes loss on predicted image (L_{img} in eq. 6 in paper)
:param prediction (tuple): Output of forward pass.
:param ground_truth: Ground-truth (unused).
:return: image reconstruction loss.
"""
pred_imgs, _ = prediction
trgt_imgs = ground_truth['rgb']
trgt_imgs = trgt_imgs.cuda()
loss = self.l2_loss(pred_imgs, trgt_imgs)
return loss
def get_latent_loss(self):
"""Computes loss on latent code vectors (L_{latent} in eq. 6 in paper)
:return: Latent loss.
"""
if self.fit_single_srn:
self.latent_reg_loss = 0
else:
self.latent_reg_loss = torch.mean(self.z ** 2)
return self.latent_reg_loss
def get_psnr(self, prediction, ground_truth):
"""Compute PSNR of model image predictions.
:param prediction: Return value of forward pass.
:param ground_truth: Ground truth.
:return: (psnr, ssim): tuple of floats
"""
pred_imgs, _ = prediction
trgt_imgs = ground_truth['rgb']
trgt_imgs = trgt_imgs.cuda()
batch_size = pred_imgs.shape[0]
if not isinstance(pred_imgs, np.ndarray):
pred_imgs = util.lin2img(pred_imgs).detach().cpu().numpy()
if not isinstance(trgt_imgs, np.ndarray):
trgt_imgs = util.lin2img(trgt_imgs).detach().cpu().numpy()
psnrs, ssims = list(), list()
for i in range(batch_size):
p = pred_imgs[i].squeeze().transpose(1, 2, 0)
trgt = trgt_imgs[i].squeeze().transpose(1, 2, 0)
p = (p / 2.) + 0.5
p = np.clip(p, a_min=0., a_max=1.)
trgt = (trgt / 2.) + 0.5
ssim = skimage.measure.compare_ssim(p, trgt, multichannel=True, data_range=1)
psnr = skimage.measure.compare_psnr(p, trgt, data_range=1)
psnrs.append(psnr)
ssims.append(ssim)
return psnrs, ssims
def get_comparisons(self, model_input, prediction, ground_truth=None):
predictions, depth_maps = prediction
batch_size = predictions.shape[0]
# Parse model input.
intrinsics = model_input["intrinsics"].cuda()
uv = model_input["uv"].cuda().float()
x_cam = uv[:, :, 0].view(batch_size, -1)
y_cam = uv[:, :, 1].view(batch_size, -1)
z_cam = depth_maps.view(batch_size, -1)
normals = geometry.compute_normal_map(x_img=x_cam, y_img=y_cam, z=z_cam, intrinsics=intrinsics)
normals = F.pad(normals, pad=(1, 1, 1, 1), mode="constant", value=1.)
predictions = util.lin2img(predictions)
if ground_truth is not None:
trgt_imgs = ground_truth["rgb"]
trgt_imgs = util.lin2img(trgt_imgs)
return torch.cat((normals.cpu(), predictions.cpu(), trgt_imgs.cpu()), dim=3).numpy()
else:
return torch.cat((normals.cpu(), predictions.cpu()), dim=3).numpy()
def get_output_img(self, prediction):
pred_imgs, _ = prediction
return util.lin2img(pred_imgs)
def write_updates(self, writer, predictions, ground_truth, iter, prefix=""):
"""Writes tensorboard summaries using tensorboardx api.
:param writer: tensorboardx writer object.
:param predictions: Output of forward pass.
:param ground_truth: Ground truth.
:param iter: Iteration number.
:param prefix: Every summary will be prefixed with this string.
"""
predictions, depth_maps = predictions
trgt_imgs = ground_truth['rgb']
trgt_imgs = trgt_imgs.cuda()
batch_size, num_samples, _ = predictions.shape
# Module"s own log
for type, name, content, every_n in self.logs:
name = prefix + name
if not iter % every_n:
if type == "image":
writer.add_image(name, content.detach().cpu().numpy(), iter)
writer.add_scalar(name + "_min", content.min(), iter)
writer.add_scalar(name + "_max", content.max(), iter)
elif type == "figure":
writer.add_figure(name, content, iter, close=True)
elif type == "histogram":
writer.add_histogram(name, content.detach().cpu().numpy(), iter)
elif type == "scalar":
writer.add_scalar(name, content.detach().cpu().numpy(), iter)
elif type == "embedding":
writer.add_embedding(mat=content, global_step=iter)
if not iter % 100:
output_vs_gt = torch.cat((predictions, trgt_imgs), dim=0)
output_vs_gt = util.lin2img(output_vs_gt)
writer.add_image(prefix + "Output_vs_gt",
torchvision.utils.make_grid(output_vs_gt,
scale_each=False,
normalize=True).cpu().detach().numpy(),
iter)
rgb_loss = ((predictions.float().cuda() - trgt_imgs.float().cuda()) ** 2).mean(dim=2, keepdim=True)
rgb_loss = util.lin2img(rgb_loss)
fig = util.show_images([rgb_loss[i].detach().cpu().numpy().squeeze()
for i in range(batch_size)])
writer.add_figure(prefix + "rgb_error_fig",
fig,
iter,
close=True)
depth_maps_plot = util.lin2img(depth_maps)
writer.add_image(prefix + "pred_depth",
torchvision.utils.make_grid(depth_maps_plot.repeat(1, 3, 1, 1),
scale_each=True,
normalize=True).cpu().detach().numpy(),
iter)
writer.add_scalar(prefix + "out_min", predictions.min(), iter)
writer.add_scalar(prefix + "out_max", predictions.max(), iter)
writer.add_scalar(prefix + "trgt_min", trgt_imgs.min(), iter)
writer.add_scalar(prefix + "trgt_max", trgt_imgs.max(), iter)
if iter:
writer.add_scalar(prefix + "latent_reg_loss", self.latent_reg_loss, iter)
def forward(self, input, z=None):
self.logs = list() # log saves tensors that"ll receive summaries when model"s write_updates function is called
# Parse model input.
instance_idcs = input["instance_idx"].long().cuda()
pose = input["pose"].cuda()
intrinsics = input["intrinsics"].cuda()
uv = input["uv"].cuda().float()
if self.fit_single_srn:
phi = self.phi
else:
if self.has_params: # If each instance has a latent parameter vector, we"ll use that one.
if z is None:
self.z = input["param"].cuda()
else:
self.z = z
else: # Else, we"ll use the embedding.
self.z = self.latent_codes(instance_idcs)
phi = self.hyper_phi(self.z) # Forward pass through hypernetwork yields a (callable) SRN.
# Raymarch SRN phi along rays defined by camera pose, intrinsics and uv coordinates.
points_xyz, depth_maps, log = self.ray_marcher(cam2world=pose,
intrinsics=intrinsics,
uv=uv,
phi=phi)
self.logs.extend(log)
# Sapmle phi a last time at the final ray-marched world coordinates.
v = phi(points_xyz)
# Translate features at ray-marched world coordinates to RGB colors.
novel_views = self.pixel_generator(v)
# Calculate normal map
with torch.no_grad():
batch_size = uv.shape[0]
x_cam = uv[:, :, 0].view(batch_size, -1)
y_cam = uv[:, :, 1].view(batch_size, -1)
z_cam = depth_maps.view(batch_size, -1)
normals = geometry.compute_normal_map(x_img=x_cam, y_img=y_cam, z=z_cam, intrinsics=intrinsics)
self.logs.append(("image", "normals",
torchvision.utils.make_grid(normals, scale_each=True, normalize=True), 100))
if not self.fit_single_srn:
self.logs.append(("embedding", "", self.latent_codes.weight, 500))
self.logs.append(("scalar", "embed_min", self.z.min(), 1))
self.logs.append(("scalar", "embed_max", self.z.max(), 1))
return novel_views, depth_maps