-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathknapsack_branch_and_bound.cpp
122 lines (94 loc) · 2.75 KB
/
knapsack_branch_and_bound.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
struct Item
{
float weight;
int value;
};
struct Node
{
int level; //level of node in decision tree (also index in arr[])
int profit; //total value of nodes from root to this node (including this node)
int bound; //upper bound on maximum profit
float weight;
};
bool cmp(Item a, Item b)
{
double r1 = (double) a.value / a.weight;
double r2 = (double) b.value / b.weight;
return r1 > r2;
}
int bound(Node u, int n, int W, Item arr[])
{
//returns upper bound on profit in subtree rooted at u
//using greedy solution
if (u.weight >= W) {return 0;}
//init
int profit_bound = u.profit;
int j = u.level + 1;
int tot_weight = u.weight;
while ((j < n) && (tot_weight + arr[j].weight <= W))
{
tot_weight += arr[j].weight;
profit_bound += arr[j].value;
j++;
}
//include last item fractionally
if (j < n)
{
profit_bound += (W - tot_weight) * arr[j].value / arr[j].weight;
}
return profit_bound;
}
int knapsack_bb(int W, Item arr[], int n)
{
//sort Items based on greedy heuristics (value / weight)
sort(arr, arr + n, cmp);
//create a queue for traversing decision tree (include / not include each item)
queue<Node> Q;
Node u, v;
//dummy node
u.level = -1;
u.profit = u.weight = 0;
Q.push(u);
int max_profit = 0;
while (!Q.empty())
{
u = Q.front(); Q.pop();
//if starting node, assign level = 0
if (u.level == -1) {v.level = 0;}
//if last level continue
if (u.level == n-1 ) {continue;}
//examine first branch (i.e. adding item to knapsack)
//increment level and compute profit
v.level = u.level + 1;
v.weight = u.weight + arr[v.level].weight;
v.profit = u.profit + arr[v.level].value;
if (v.weight <= W && v.profit > max_profit) {max_profit = v.profit;}
//get the upper bound on profit to decide
//whether to add v to Q or not
v.bound = bound(v, n, W, arr);
if (v.bound > max_profit)
Q.push(v);
//examine second branch (i.e. not adding item to knapsack)
v.weight = u.weight;
v.profit = u.profit;
v.bound = bound(v, n, W, arr);
if (v.bound > max_profit)
Q.push(v);
}
return max_profit;
}
int main()
{
int W = 10; //knapsack capacity
Item arr[] = {{2.0, 40}, {3.14, 50}, {1.98, 100},
{5.0, 95}, {3.0, 30}}; //{weight, value}
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Branch and Bound knapsack\n";
cout << "maximum value: " << knapsack_bb(W, arr, n);
cout << endl;
return 0;
}