-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathbinomial_tree.py
58 lines (43 loc) · 1.64 KB
/
binomial_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(42)
def binomial_tree(mu, sigma, S0, N, T, step):
#compute state price and probability
u = np.exp(sigma * np.sqrt(step)) #up state price
d = 1.0/u #down state price
p = 0.5+0.5*(mu/sigma)*np.sqrt(step) #prob of up state
#binomial tree simulation
up_times = np.zeros((N, len(T)))
down_times = np.zeros((N, len(T)))
for idx in range(len(T)):
up_times[:,idx] = np.random.binomial(T[idx]/step, p, N)
down_times[:,idx] = T[idx]/step - up_times[:,idx]
#compute terminal price
ST = S0 * u**up_times * d**down_times
#generate plots
plt.figure()
plt.plot(ST[:,0], color='b', alpha=0.5, label='1 month horizon')
plt.plot(ST[:,1], color='r', alpha=0.5, label='1 year horizon')
plt.xlabel('time step, day')
plt.ylabel('price')
plt.title('Binomial-Tree Stock Simulation')
plt.legend()
plt.show()
plt.figure()
plt.hist(ST[:,0], color='b', alpha=0.5, label='1 month horizon')
plt.hist(ST[:,1], color='r', alpha=0.5, label='1 year horizon')
plt.xlabel('price')
plt.ylabel('count')
plt.title('Binomial-Tree Stock Simulation')
plt.legend()
plt.show()
if __name__ == "__main__":
#model parameters
mu = 0.1 #mean
sigma = 0.15 #volatility
S0 = 1 #starting price
N = 10000 #number of simulations
T = [21.0/252, 1.0] #time horizon in years
step = 1.0/252 #time step in years
binomial_tree(mu, sigma, S0, N, T, step)