-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathdpmeans.py
181 lines (140 loc) · 5.39 KB
/
dpmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np
import matplotlib.pyplot as plt
import time
from sklearn import metrics
from sklearn.datasets import load_iris
np.random.seed(42)
class dpmeans:
def __init__(self,X):
# Initialize parameters for DP means
self.K = 1
self.K_init = 4
self.d = X.shape[1]
self.z = np.mod(np.random.permutation(X.shape[0]),self.K)+1
self.mu = np.random.standard_normal((self.K, self.d))
self.sigma = 1
self.nk = np.zeros(self.K)
self.pik = np.ones(self.K)/self.K
#init mu
self.mu = np.array([np.mean(X,0)])
#init lambda
self.Lambda = self.kpp_init(X,self.K_init)
self.max_iter = 100
self.obj = np.zeros(self.max_iter)
self.em_time = np.zeros(self.max_iter)
def kpp_init(self,X,k):
#k++ init
#lambda is max distance to k++ means
[n,d] = np.shape(X)
mu = np.zeros((k,d))
dist = np.inf*np.ones(n)
mu[0,:] = X[int(np.random.rand()*n-1),:]
for i in range(1,k):
D = X-np.tile(mu[i-1,:],(n,1))
dist = np.minimum(dist, np.sum(D*D,1))
idx = np.where(np.random.rand() < np.cumsum(dist/float(sum(dist))))
mu[i,:] = X[idx[0][0],:]
Lambda = np.max(dist)
print("Lambda: ", Lambda)
return Lambda
def fit(self,X):
obj_tol = 1e-3
max_iter = self.max_iter
[n,d] = np.shape(X)
obj = np.zeros(max_iter)
em_time = np.zeros(max_iter)
print('running dpmeans...')
for iter in range(max_iter):
tic = time.time()
dist = np.zeros((n,self.K))
#assignment step
for kk in range(self.K):
Xm = X - np.tile(self.mu[kk,:],(n,1))
dist[:,kk] = np.sum(Xm*Xm,1)
#update labels
dmin = np.min(dist,1)
self.z = np.argmin(dist,1)
idx = np.where(dmin > self.Lambda)
if (np.size(idx) > 0):
self.K = self.K + 1
self.z[idx[0]] = self.K-1 #cluster labels in [0,...,K-1]
self.mu = np.vstack([self.mu,np.mean(X[idx[0],:],0)])
Xm = X - np.tile(self.mu[self.K-1,:],(n,1))
dist = np.hstack([dist, np.array([np.sum(Xm*Xm,1)]).T])
#update step
self.nk = np.zeros(self.K)
for kk in range(self.K):
self.nk[kk] = self.z.tolist().count(kk)
idx = np.where(self.z == kk)
self.mu[kk,:] = np.mean(X[idx[0],:],0)
self.pik = self.nk/float(np.sum(self.nk))
#compute objective
for kk in range(self.K):
idx = np.where(self.z == kk)
obj[iter] = obj[iter] + np.sum(dist[idx[0],kk],0)
obj[iter] = obj[iter] + self.Lambda * self.K
#check convergence
if (iter > 0 and np.abs(obj[iter]-obj[iter-1]) < obj_tol*obj[iter]):
print('converged in %d iterations\n'% iter)
break
em_time[iter] = time.time()-tic
#end for
self.obj = obj
self.em_time = em_time
return self.z, obj, em_time
def compute_nmi(self, z1, z2):
# compute normalized mutual information
n = np.size(z1)
k1 = np.size(np.unique(z1))
k2 = np.size(np.unique(z2))
nk1 = np.zeros((k1,1))
nk2 = np.zeros((k2,1))
for kk in range(k1):
nk1[kk] = np.sum(z1==kk)
for kk in range(k2):
nk2[kk] = np.sum(z2==kk)
pk1 = nk1/float(np.sum(nk1))
pk2 = nk2/float(np.sum(nk2))
nk12 = np.zeros((k1,k2))
for ii in range(k1):
for jj in range(k2):
nk12[ii,jj] = np.sum((z1==ii)*(z2==jj))
pk12 = nk12/float(n)
Hx = -np.sum(pk1 * np.log(pk1 + np.finfo(float).eps))
Hy = -np.sum(pk2 * np.log(pk2 + np.finfo(float).eps))
Hxy = -np.sum(pk12 * np.log(pk12 + np.finfo(float).eps))
MI = Hx + Hy - Hxy;
nmi = MI/float(0.5*(Hx+Hy))
return nmi
def generate_plots(self,X):
plt.close('all')
plt.figure(0)
for kk in range(self.K):
#idx = np.where(self.z == kk)
plt.scatter(X[self.z == kk,0], X[self.z == kk,1], \
s = 100, marker = 'o', c = np.random.rand(3,), label = str(kk))
#end for
plt.xlabel('X1')
plt.ylabel('X2')
plt.legend()
plt.title('DP-means clusters')
plt.grid(True)
plt.show()
plt.figure(1)
plt.plot(self.obj)
plt.title('DP-means objective function')
plt.xlabel('iterations')
plt.ylabel('penalized l2 squared distance')
plt.grid(True)
plt.show()
if __name__ == "__main__":
iris = load_iris()
X = iris.data
y = iris.target
dp = dpmeans(X)
labels, obj, em_time = dp.fit(X)
dp.generate_plots(X)
nmi = dp.compute_nmi(y,labels)
ari = metrics.adjusted_rand_score(y,labels)
print("NMI: %.4f" % nmi)
print("ARI: %.4f" % ari)