-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathinv_cov.py
134 lines (105 loc) · 4.07 KB
/
inv_cov.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import pandas as pd
from scipy import linalg
from datetime import datetime
import pytz
from sklearn.datasets import make_sparse_spd_matrix
from sklearn.covariance import GraphicalLassoCV, ledoit_wolf
from sklearn.preprocessing import StandardScaler
from sklearn import cluster, manifold
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
import pandas_datareader.data as web
np.random.seed(42)
def main():
#generate data (synthetic)
#num_samples = 60
#num_features = 20
#prec = make_sparse_spd_matrix(num_features, alpha=0.95, smallest_coef=0.4, largest_coef=0.7)
#cov = linalg.inv(prec)
#X = np.random.multivariate_normal(np.zeros(num_features), cov, size=num_samples)
#X = StandardScaler().fit_transform(X)
#generate data (actual)
STOCKS = {
'SPY': 'S&P500',
'LQD': 'Bond_Corp',
'TIP': 'Bond_Treas',
'GLD': 'Gold',
'MSFT': 'Microsoft',
'XOM': 'Exxon',
'AMZN': 'Amazon',
'BAC': 'BofA',
'NVS': 'Novartis'}
symbols, names = np.array(list(STOCKS.items())).T
#load data
#year, month, day, hour, minute, second, microsecond
start = datetime(2015, 1, 1, 0, 0, 0, 0, pytz.utc)
end = datetime(2017, 1, 1, 0, 0, 0, 0, pytz.utc)
qopen, qclose = [], []
data_close, data_open = pd.DataFrame(), pd.DataFrame()
for ticker in symbols:
price = web.DataReader(ticker, 'stooq', start, end)
qopen.append(price['Open'])
qclose.append(price['Close'])
data_open = pd.concat(qopen, axis=1)
data_open.columns = symbols
data_close = pd.concat(qclose, axis=1)
data_close.columns = symbols
#per day variation in price for each symbol
variation = data_close - data_open
variation = variation.dropna()
X = variation.values
X /= X.std(axis=0) #standardize to use correlations rather than covariance
#estimate inverse covariance
graph = GraphicalLassoCV()
graph.fit(X)
gl_cov = graph.covariance_
gl_prec = graph.precision_
gl_alphas = graph.cv_alphas_
gl_scores = graph.cv_results_['mean_test_score']
plt.figure()
sns.heatmap(gl_prec, xticklabels=names, yticklabels=names)
plt.xticks(rotation=45)
plt.yticks(rotation=45)
plt.tight_layout()
plt.show()
plt.figure()
plt.plot(gl_alphas, gl_scores, marker='o', color='b', lw=2.0, label='GraphLassoCV')
plt.title("Graph Lasso Alpha Selection")
plt.xlabel("alpha")
plt.ylabel("score")
plt.legend()
plt.show()
#cluster using affinity propagation
_, labels = cluster.affinity_propagation(gl_cov)
num_labels = np.max(labels)
for i in range(num_labels+1):
print("Cluster %i: %s" %((i+1), ', '.join(names[labels==i])))
#find a low dim embedding for visualization
node_model = manifold.LocallyLinearEmbedding(n_components=2, n_neighbors=6, eigen_solver='dense')
embedding = node_model.fit_transform(X.T).T
#generate plots
plt.figure()
plt.clf()
ax = plt.axes([0.,0.,1.,1.])
plt.axis('off')
partial_corr = gl_prec
d = 1 / np.sqrt(np.diag(partial_corr))
non_zero = (np.abs(np.triu(partial_corr, k=1)) > 0.02) #connectivity matrix
#plot the nodes
plt.scatter(embedding[0], embedding[1], s = 100*d**2, c = labels, cmap = plt.cm.Spectral)
#plot the edges
start_idx, end_idx = np.where(non_zero)
segments = [[embedding[:,start], embedding[:,stop]] for start, stop in zip(start_idx, end_idx)]
values = np.abs(partial_corr[non_zero])
lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0,0.7*values.max()))
lc.set_array(values)
lc.set_linewidths(2*values)
ax.add_collection(lc)
#plot the labels
for index, (name, label, (x,y)) in enumerate(zip(names, labels, embedding.T)):
plt.text(x,y,name,size=12)
plt.show()
if __name__ == "__main__":
main()