-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
135 lines (108 loc) · 4.7 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import random
import torch
import torch.utils.data
from utils import load_wav_to_torch
from mel_processing import spectrogram_torch, spec_to_mel_torch
from augment import Augmentor
def load_filepaths(filename, split="|"):
with open(filename, encoding='utf-8') as f:
filepaths = [line.strip().split(split)[0] for line in f]
return filepaths
"""Multi speaker version"""
class AudioLoader(torch.utils.data.Dataset):
"""
1) loads audio
2) computes spectrograms from audio files.
"""
def __init__(self, labels, hparams):
self.audiopaths = load_filepaths(labels)
self.max_wav_value = hparams.max_wav_value
self.sampling_rate = hparams.sampling_rate
self.filter_length = hparams.filter_length
self.hop_length = hparams.hop_length
self.win_length = hparams.win_length
self.n_mel = hparams.n_mel_channels
self.mel_fmin = hparams.mel_fmin
self.mel_fmax = hparams.mel_fmax
self.min_unit_len = getattr(hparams, "min_unit_len", 1)
self.max_unit_len = getattr(hparams, "max_unit_len", 1000)
random.seed(1234)
random.shuffle(self.audiopaths)
def get_data(self, audiopath):
spec, wav = self.get_audio(audiopath)
mel = spec_to_mel_torch(spec, self.filter_length,
self.n_mel, self.sampling_rate,
self.mel_fmin, self.mel_fmax)
return (spec, wav, mel)
def get_audio(self, filename):
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError("{} {} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
spec_filename = filename.replace(".wav", ".spec.pt")
if os.path.exists(spec_filename):
spec = torch.load(spec_filename)
else:
spec = spectrogram_torch(audio_norm, self.filter_length,
self.sampling_rate, self.hop_length, self.win_length,
center=False)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_filename)
return spec, audio_norm # spec [c, t]
def __getitem__(self, index):
return self.get_data(self.audiopaths[index])
def __len__(self):
return len(self.audiopaths)
augmentor = Augmentor()
class AudioCollate():
""" Zero-pads model inputs and targets
"""
def __init__(self, hparams, return_ids=False):
self.return_ids = return_ids
self.filter_length = hparams.filter_length
self.hop_length = hparams.hop_length
self.win_length = hparams.win_length
self.sampling_rate = hparams.sampling_rate
def __call__(self, batch):
"""Collate's training batch from audio
PARAMS
------
batch: [spec_normalized, wav_normalized, mel_normalized]
"""
# Sort batch by spec length (descending order)
_, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x[0].size(1) for x in batch]),
dim=0, descending=True)
max_spec_len = max([x[0].size(1) for x in batch])
max_wav_len = max([x[1].size(1) for x in batch])
spec_lengths = torch.LongTensor(len(batch))
wav_lengths = torch.LongTensor(len(batch))
spec_padded = torch.FloatTensor(
len(batch), batch[0][0].size(0), max_spec_len)
mel_padded = torch.FloatTensor(
len(batch), batch[0][2].size(0), max_spec_len)
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
mel_padded.zero_()
spec_padded.zero_()
wav_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
spec = row[0]
spec_padded[i, :, :spec.size(1)] = spec
spec_lengths[i] = spec.size(1)
mel = row[2]
mel_padded[i, :, :spec.size(1)] = mel
wav = row[1]
wav_padded[i, :, :wav.size(1)] = wav
wav_lengths[i] = wav.size(1)
global augmentor
wav_aug = augmentor.augment(wav_padded.squeeze(1))
spec_aug = spectrogram_torch(wav_aug, self.filter_length, self.sampling_rate,
self.hop_length, self.win_length, center=False)
# spec_aug is padded, lengths same as spec_padded.
if self.return_ids:
return spec_aug, spec_padded, mel_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
return spec_aug, spec_padded, mel_padded, spec_lengths, wav_padded, wav_lengths