Skip to content

Latest commit

 

History

History
132 lines (87 loc) · 2.63 KB

README.md

File metadata and controls

132 lines (87 loc) · 2.63 KB

Interactive t-SNE

tsnex-demo

elm client app

Build final elm-client:

cd idr-elm
elm make src/Main.elm --output=main.html

For demo (production), use this main.html:

  • cp main.html ./data/
  • run static server as the following notes.

Demo workflow in Built environment:

  • Run python socket server (internal port 5000)
cd idr-server/tsnex
python tsnex_flask_socket.py 

  • Run static server to serve the image and the final built output main.html: (port 8001)
cd idr-server
python -m http.server 8001

# goto lo

Demo workflow in DEV envirionment:

Locate into the root dir of the project

pwd # /home/vmvu/WorkspaceSync/IDR
  • Run static server to serve the image: (port 8888)
cd idr-server/ # TODO re-check
python -m http.server 8888

  • Run python socket server (internal port 5000)
cd idr-server/tsnex
python tsnex_flask_socket.py 

  • Run client ELM app (web port 8000)
cd idr-elm
elm-reactor

Installation notes

  1. Install elm and client packages
cd idr-elm
elm package install --yes

# run elm-reactor in dev mode with auto reload
elm-reactor

=> go to http://localhost:8000/src/Main.elm

  1. [Optional] Build client without debug
# compile elm to javascript and pack all in a sigle html file
cd idr-elm
elm-make src/Main.elm --output=main.html

# run a simple http server to serve main html file and assert
python -m http.server 8000

=> go to http://localhost:8000/main.html

  1. Redis server:

    • Install, run service:

      sudo apt-get install redis-server
      sudo systemctl restart redis-server.service
      sudo systemctl enable redis-server.service # enable on system boot
      
    • Python lib: Redis-py

      pip install redis

    • Monitor:

      • MONITOR command.
      • Redis-stat
        • Run: java -jar redis-stat-0.4.14.jar --server
        • Host: http://localhost:63790/
  2. Python websocker server:

    • Flask sockets

    • Money patching to: sklearn.manifold.t_sne._gradient_descent function.

    • Run server:

    cd idr-server/tsnex
    python tsnex_flash_socket.py
    

Algorithm