forked from trueagi-io/hyperon-experimental
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_examples.py
425 lines (375 loc) · 16.9 KB
/
test_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import unittest
from hyperon import *
from test_common import *
class ExamplesTest(HyperonTestCase):
def test_grounded_functions(self):
metta = MeTTa(env_builder=Environment.test_env())
obj = SomeObject()
# using & as a prefix is not obligatory, but is naming convention
metta.register_atom("&obj", ValueAtom(obj))
target = metta.parse_single('((py-dot &obj foo))')
# interpreting this target in another space still works,
# because substitution '&obj' -> obj is done by metta
metta2 = MeTTa(env_builder=Environment.test_env())
result = interpret(metta2.space(), E(Atoms.METTA, target,
AtomType.UNDEFINED, G(metta2.space())))
self.assertTrue(obj.called)
self.assertEqual(result, [Atoms.UNIT])
# But it will not work if &obj is parsed in another space
result = metta2.run('!((py-dot &obj foo))')[0]
self.assertEqual(repr(result), '[((py-dot &obj foo))]')
def test_kwargs(self):
def my_func(x = 1, y = 2, z = 4):
return x + y + z
metta = MeTTa(env_builder=Environment.test_env())
metta.register_atom("&f", OperationAtom("&f", my_func))
self.assertEqualMettaRunnerResults(
metta.run('''
! (&f 2 4 6)
! (&f 0)
! (&f (Kwargs (y 4)))
! (&f 2 (Kwargs (z 1)))
! (&f 0 (Kwargs (z 1) (y 1)))
'''),
[[ValueAtom(12)],
[ValueAtom(6)],
[ValueAtom(9)],
[ValueAtom(5)],
[ValueAtom(2)]]
)
# TODO: it's a custom implementation of State. We may not need it anymore
def test_self_modify(self):
metta = MeTTa(env_builder=Environment.test_env())
metta.run(
'''
(= (remove-st $var)
(match &self (state $var $y)
(remove-atom &self (state $var $y))))
(= (change-st $var $value)
(superpose ((remove-st $var)
(add-atom &self (state $var $value)))))
(= (get-st $var)
(match &self (state $var $value) $value))
''')
metta.run('!(change-st (name id-001) Fritz)')
self.assertEqualMettaRunnerResults(metta.run('!(get-st (name id-001))'),
[[S('Fritz')]])
metta.run('!(change-st (name id-001) Sam)')
self.assertEqualMettaRunnerResults(metta.run('!(get-st (name id-001))'),
[[S('Sam')]])
def test_new_object(self):
metta = MeTTa(env_builder=Environment.test_env())
pglob = Global(10)
ploc = 10
metta.register_token("pglob", lambda _: ValueAtom(pglob))
metta.register_token("ploc", lambda _: ValueAtom(ploc))
metta.register_token("Setter", lambda token: newNewAtom(token, Setter))
metta.register_token("SetAtom", lambda token: newNewAtom(token, Setter, False))
# Just checking that interpretation of "pglob" gives us
# a grounded atom that stores 10
self.assertEqual(metta.run('! pglob')[0][0].get_object().value.get(), 10)
# Checking that:
# - we create an atom on fly
# - we change the value stored by the Python object
# - interpretation of "pglob" will also give us this new value
metta.run('!((py-dot (Setter pglob 5) act))')
self.assertEqual(pglob.get(), 5)
self.assertEqual(metta.run('! pglob')[0][0].get_object().value.get(), 5)
# Now check that "ploc" will not change, since
# it is passed by value - not reference
metta.run('!((py-dot (Setter ploc 5) let))')
self.assertEqual(ploc, 10)
self.assertEqual(metta.run('! ploc')[0][0].get_object().value, 10)
# Now we try to change the grounded atom value directly
# (equivalent to metta.run but keeping target)
target = metta.parse_single('((py-dot (SetAtom ploc 5) latom))')
interpret(metta.space(), E(Atoms.METTA, target, AtomType.UNDEFINED,
G(metta.space())))
t = target.get_children()[0] # unwrap outermost brackets
# "ploc" value in the "target" is changed
self.assertEqual(t.get_children()[1].get_children()[1].get_object().value, 5)
# But it is still not changed in another target, because
# "ploc" creates ValueAtom(ploc) on each occurrence
self.assertEqual(metta.run('! ploc')[0][0].get_object().value, 10)
# Another way is to return the same atom each time
ploca = ValueAtom(ploc)
metta.register_token("ploca", lambda _: ploca)
# It will be not affected by assigning unwrapped values:
# we are still copying values while unwrapping
metta.run('!((py-dot (Setter ploca 5) let))')
self.assertEqual(metta.run('! ploca')[0][0].get_object().value, 10)
self.assertEqual(ploca.get_object().value, 10)
# However, it will be affected by assigning atom values
metta.run('!((py-dot (SetAtom ploca 5) latom))')
self.assertEqual(metta.run('! ploca')[0][0].get_object().value, 5)
self.assertEqual(ploca.get_object().value, 5)
def test_frog_reasoning(self):
metta = MeTTa(env_builder=Environment.test_env())
metta.run('''
(= (croaks Fritz) True)
(= (chirps Tweety) True)
(= (yellow Tweety) True)
(= (eats_flies Tweety) True)
(= (eats_flies Fritz) True)
''')
fritz_frog = metta.run('!(if (and (croaks $x) (eats_flies $x)) (= (frog $x) True) nop)')[0]
self.assertEqual(metta.parse_all('(= (frog Fritz) True)'), fritz_frog)
metta.space().add_atom(fritz_frog[0])
self.assertEqualMettaRunnerResults([metta.parse_all('(= (green Fritz) True)')],
metta.run('!(if (frog $x) (= (green $x) True) nop)'))
def test_infer_function_application_type(self):
metta = MeTTa(env_builder=Environment.test_env())
metta.run('''
(= (: (apply\' $f $x) $r) (and (: $f (=> $a $r)) (: $x $a)))
(= (: reverse (=> String String)) True)
(= (: "Hello" String) True)
''')
output = metta.run('!(if (: (apply\' reverse "Hello") $t) $t Wrong)')
self.assertEqualMettaRunnerResults(output, [[S('String')]])
def test_plus_reduces_Z(self):
metta = MeTTa(env_builder=Environment.test_env())
metta.run('''
(= (eq $x $x) True)
(= (plus Z $y) $y)
(= (plus (S $k) $y) (S (plus $k $y)))
''')
self.assertEqualMettaRunnerResults(metta.run('''
!(eq (+ 2 2) 4)
!(eq (+ 2 3) 4)
!(eq (plus Z $n) $n)
'''),
[[ValueAtom(True)],
metta.parse_all('(eq 5 4)'),
[ValueAtom(True)]
]
)
output = metta.run('!(eq (plus (S Z) $n) $n)')
self.assertAtomsAreEquivalent(output[0], metta.parse_all('(eq (S $y) $y)'))
def test_multi_space(self):
# NOTE: it is not recommended to split code into multiple spaces, because
# query chaining by the interpreter can behave in a tricky way
# (putting data without equalities in a separate space and querying it
# explicitly from another space should be safe, though)
# NOTE: these tests are not indended to remain valid, but are needed to
# detect, if something is changes in the interpreter
metta1 = MeTTa(env_builder=Environment.test_env())
metta1.run('''
(eq A B)
(= (f-in-s2) failure)
(= (how-it-works?) (f-in-s2))
(= (inverse $x) (match &self (eq $y $x) $y))
''')
metta2 = MeTTa(env_builder=Environment.test_env())
metta2.register_atom("&space1", metta1.run("! &self")[0][0])
metta2.run('''
(eq C B)
(= (f-in-s2) success)
(= (find-in $s $x) (match $s (eq $y $x) $y))
(= (borrow $s $e) (match $s (= $e $r) $r))
''')
self.assertEqualMettaRunnerResults(metta1.run('!(inverse B)'), [[S('A')]])
self.assertEqualMettaRunnerResults(metta2.run('!(find-in &space1 B)'), [[S('A')]])
self.assertEqualMettaRunnerResults(metta2.run('!(find-in &self B)'), [[S('C')]])
# `inverse` is successfully found in `&space1`
# it resolves `&self` to metta1.space and matches against `(= A B)`
self.assertEqualMettaRunnerResults(metta2.run('!(borrow &space1 (inverse B))'), [[S('A')]])
# `borrow` executes `how-it-works?` in context of `&space1` via `match`
# but then the interpreter evaluates `(how-it-works?)` via equality query
# in the original metta2.space
self.assertEqualMettaRunnerResults(metta2.run('!(borrow &space1 (how-it-works?))'), [[S('success')]])
self.assertEqualMettaRunnerResults(metta1.run('!(how-it-works?)'), [[S('failure')]])
def test_custom_deptypes(self):
metta = MeTTa(env_builder=Environment.test_env())
metta.run('''
(= (:? $c)
(match &self (:= $c $t) $t))
(= (:? ($c $a))
(let $at (:? $a)
(match &self (:= ($c $at) $t) $t)))
(= (:? ($c $a $b))
(let* (($at (:? $a))
($bt (:? $b)))
(match &self (:= ($c $at $bt) $t) $t)))
(= (:check $c $t)
(match &self (:= $c $t) T))
(= (:check ($c $a) $t)
(let $at (:? $a)
(match &self (:= ($c $at) $t) T)))
(= (:check ($c $a $b) $t)
(let* (($at (:? $a))
($bt (:? $b)))
(match &self (:= ($c $at $bt) $t) T)))
(:= (= $t $t) Prop)
(:= Entity Prop)
(:= (Human Entity) Prop)
(:= Socrates Entity)
(:= Plato Entity)
(:= Time NotEntity)
(:= (Mortal Entity) Prop)
(:= (HumansAreMortal (Human $t)) (Mortal $t))
(:= SocratesIsHuman (Human Socrates))
(:= SocratesIsMortal (Mortal Socrates))
(:= Sam Entity)
(:= (Frog Entity) Prop)
(:= (Green Entity) Prop)
(:= (Croaks Entity) Prop)
(:= (GreenAndCroaksIsFrog (Green $t) (Croaks $t)) (Frog $t))
(:= SamIsGreen (Green Sam))
(:= SamCroaks (Croaks Sam))
''')
self.assertEqualMettaRunnerResults(metta.run('''
!(:? (HumansAreMortal SocratesIsHuman))
!(:check (HumansAreMortal SocratesIsHuman) (Mortal Socrates))
!(:? (= SocratesIsMortal (HumansAreMortal SocratesIsHuman)))
!(:check (= (Mortal Plato) (Mortal Socrates)) Prop)
!(:check (= (Human Socrates) (Mortal Socrates)) Prop)
!(:? (GreenAndCroaksIsFrog SamIsGreen SamCroaks))
'''),
[[E(S('Mortal'), S('Socrates'))],
[S('T')],
[S('Prop')],
[S('T')],
[S('T')], # they are both of Prop type and can be equated
[E(S('Frog'), S('Sam'))]
]
)
# some negative examples
self.assertEqualMettaRunnerResults(metta.run('''
!(:check (= SocratesIsHuman SocratesIsMortal) Prop)
!(:? (SocratesIsHuman (Human Socrates)))
!(:? (Human Time))
'''),
[[], [], []]
)
# The following doesn't work: `(:? (HumansAreMortal (Human Time)))` is matched against `(:? $c)`
# Then, `(:= $c $t)` is matched against `(:= (HumansAreMortal (Human $t)) (Mortal $t))`
# immediately resulting in `(Mortal Time)`. Thus, it doesn't matter that matching against
# `(= (:? ($c $a))` doesn't work (since `(:? $a)` is incorrect).
# self.assertEqualMettaRunnerResults(metta.run("!(:? (HumansAreMortal (Human Time)))"),
# [[]])
# It should be noted that `(HumansAreMortal (Human Socrates))` is also an incorrectly typed
# expression, since HumansAreMortal expects an element of (Human Socrates) - not the type itself
# Another syntax
metta = MeTTa(env_builder=Environment.test_env())
metta.run('''
(= (:? $c)
(match &self (:: $c $t) $t))
(= (:? ($c $a))
(let $at (:? $a)
(match &self (:: $c (-> $at $t)) $t)))
(= (:? ($c $a $b))
(let* (($at (:? $a))
($bt (:? $b)))
(match &self (:: $c (-> $at $bt $t)) $t)))
(:: = (-> $t $t Type))
(:: Entity Type)
(:: Human (-> Entity Type))
(:: Socrates Entity)
(:: Plato Entity)
(:: Mortal (-> Entity Type))
(:: HumansAreMortal (-> (Human $t) (Mortal $t)))
(:: SocratesIsHuman (Human Socrates))
(:: SocratesIsMortal (Mortal Socrates))
''')
# :? just infers the type of the expression - not its inhabitance
# Note: `(Human Socrates)` and `(Human Plato)` are different types, but they are
# elements of the same Type, so they can be equated
self.assertEqualMettaRunnerResults(metta.run('''
!(:? (Human Plato))
!(:? (Human Time))
!(:? (HumansAreMortal SocratesIsHuman))
!(:? (= SocratesIsMortal (HumansAreMortal SocratesIsHuman)))
!(:? (= Human Entity))
!(:? (= (Human Socrates) Plato))
!(:? (= SocratesIsHuman SocratesIsMortal))
!(:? (= (Human Socrates) (Human Plato)))
!(:? (= Human Mortal))
!(:? (= HumansAreMortal Mortal))
'''),
[[S('Type')],
[],
[E(S('Mortal'), S('Socrates'))],
[S('Type')],
[],
[],
[],
[S('Type')],
[S('Type')],
[]
]
)
# Interestingly, the following example works correctly in this syntax, because
# application `(Human Socrates)` is not mixed up with dependent type definition
self.assertEqualMettaRunnerResults(metta.run("!(:? (HumansAreMortal (Human Socrates)))"), [[]])
def test_visit_kim(self):
# legacy test
# can be moved to b4_nondeterm.metta or removed
metta = MeTTa(env_builder=Environment.test_env())
metta.run('''
(= (perform (visit $x)) (perform (lunch-order $x)))
(= (perform (visit $x)) (perform (health-check $x)))
(impl (is-achieved (visit $x))
(And (is-achieved (lunch-order $x)) (is-achieved (health-check $x))))
(= (achieve $goal)
(match &self (impl (is-achieved $goal)
(And (is-achieved $subgoal1) (is-achieved $subgoal2)))
(do $subgoal1 $subgoal2)))
(= (achieve (health-check Kim)) True)
(= (achieve (lunch-order Kim)) False)
''')
self.assertEqualMettaRunnerResults(metta.run('''
!(perform (visit Kim))
!(achieve (visit Kim))
'''),
[metta.parse_all('(perform (lunch-order Kim)) (perform (health-check Kim))'),
metta.parse_all('(do (lunch-order Kim) (health-check Kim))')]
)
metta.run('''
(= (do $goal1 $goal2) (achieve $goal1))
(= (do $goal1 $goal2) (achieve $goal2))
''')
self.assertEqualMettaRunnerResults(metta.run('!(achieve (visit Kim))'),
[metta.parse_all('False True')])
def test_char_vs_string(self):
metta = MeTTa(env_builder=Environment.test_env())
self.assertEqual(repr(metta.run("!('A')")), "[[('A')]]")
self.assertEqual(repr(metta.run('!("A")')), '[[("A")]]')
self.assertEqualMettaRunnerResults(metta.run("!(get-type 'A')"), [[S('Char')]])
self.assertEqualMettaRunnerResults(metta.run('!(get-type "A")'), [[S('String')]])
class SomeObject():
def __init__(self):
self.called = False
def foo(self):
self.called = True
# New object example
def new_atom_op(klass, unwrap, *params):
if unwrap:
unwrapped = [param.get_object().value for param in params]
return [ValueAtom(klass(*unwrapped))]
else:
return [ValueAtom(klass(*params))]
def newNewAtom(token, klass, unwrap=True):
return OperationAtom(
token,
lambda *params: new_atom_op(klass, unwrap, *params),
unwrap=False)
class Global:
def __init__(self, x):
self.set(x)
def set(self, x):
self.x = x
def get(self):
return self.x
class Setter:
def __init__(self, var, val):
self.var = var
self.val = val
def act(self):
self.var.set(self.val)
def let(self):
self.var = self.val
def latom(self):
# if var/val are not unwrapped
self.var.get_object().content = self.val.get_object().content
if __name__ == "__main__":
unittest.main()