-
Notifications
You must be signed in to change notification settings - Fork 141
/
model.py
37 lines (29 loc) · 1.02 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Simple Linear Regression
'''
This model predicts the salary of the employ based on experience using simple linear regression model.
'''
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pickle
import requests
import json
# Importing the dataset
dataset = pd.read_csv('Salary_Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3, random_state = 0)
# Fitting Simple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Predicting the Test set results
y_pred = regressor.predict(X_test)
# Saving model using pickle
pickle.dump(regressor, open('model.pkl','wb'))
# Loading model to compare the results
model = pickle.load( open('model.pkl','rb'))
print(model.predict([[1.8]]))