-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreadme.txt
executable file
·70 lines (69 loc) · 2.72 KB
/
readme.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
.
├── analytics
├── aws
├── books
├── data manipulation
│ └── micro
│ ├── DATAFRAME AS A DICTIONARY.ipynb
│ ├── Handlling Missing Data.ipynb
│ ├── Hierarchical Indexing.ipynb
│ ├── INDEXERS LOC ILOC AND IX.ipynb
│ ├── Series and Dictionary.ipynb
│ ├── testing.ipynb
│ └── Ufuncs Index Preservation, axis.ipynb
├── deep learning
│ ├── dlaz
│ │ └── Artificial Neural Network - Bank Churn Data.ipynb
│ ├── handon-dl
│ └── nano-dl
│ ├── Sentiment_Classification_Projects.ipynb
│ └── Sentiment_Classification_Solutions.ipynb
├── finance
│ ├── Calculating Beyda.ipynb
│ ├── Multivariate Regression.ipynb
│ ├── Pandas rolling and expanding.ipynb
│ ├── time resampling.ipynb
│ └── time shifting.ipynb
├── Google Colab
├── images
├── kaggle
├── machine learning
├── mapreduce
├── matplotlib
│ └── micro
│ ├── 1D and 2D Histograms, Binnings, and Density.ipynb
│ ├── Customizing Plot Legends.ipynb
│ ├── Density and Contour plots.ipynb
│ ├── errorbars and continuous error.ipynb
│ ├── iris dataset visualization.ipynb
│ ├── Legend for Size of Points.ipynb
│ └── matplotlib general.ipynb
├── micro_projects
│ ├── 50 startups - multi linear regression ML.ipynb
│ ├── Decision Tree Classification ML.ipynb
│ ├── Decision Tree Regression ML.ipynb
│ ├── deep_learning
│ ├── Hierarchial Clustering - Mall csv ML.ipynb
│ ├── Kernel SVM ML.ipynb
│ ├── KNN for dataset Social Network Ads ML.ipynb
│ ├── Logistic Regression - Social Network Ads ML.ipynb
│ ├── Mall Customer Clusters - Kmeans ML.ipynb
│ ├── Position Salary - Polynomial regression ML.ipynb
│ ├── Position Salary Prediction - Random Forest ML.ipynb
│ ├── Random Forest Classifier ML.ipynb
│ ├── Salary Prediction ML.ipynb
│ └── Support Vector Machine (Classifier) - Network Ads ML.ipynb
├── NLP
│ ├── 16_nlp_with_rnns_and_attention - google colab.ipynb
│ ├── 16_nlp_with_rnns_and_attention.ipynb
│ ├── images
│ │ └── nlp
│ └── Shakespeare HOML _ local.ipynb
├── numpy
├── python
├── retail
│ └── five-point summary .ipynb
├── scikit-learn
├── scipy
└── spark
28 directories, 39 files