-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
292 lines (250 loc) · 14.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import tensorflow as tf
import os
import numpy as np
import sentencepiece as spm
import math
import time
import json
from shutil import copy2
from utils import calculate_model_hash
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('run_dir', './run', 'Path for storing model')
tf.app.flags.DEFINE_string('dataset', './dataset', 'Path to dataset')
tf.app.flags.DEFINE_integer('batch_size', 32, 'Size of min batch for training')
tf.app.flags.DEFINE_integer('max_epoches', 300, 'Number of epoches for training')
tf.app.flags.DEFINE_integer('rnn_num_hiden', 256, 'Num hiden neurons in each RNN layer')
tf.app.flags.DEFINE_integer('rnn_num_layers', 2, 'Num RNN layers')
tf.app.flags.DEFINE_integer('embedding_size', 50, 'Size of embedding space')
tf.app.flags.DEFINE_integer('attention_hiden_layer_size', 128, 'Num neurons in hiden layer in attention')
# tf.app.flags.DEFINE_float('lambda_l2_regl', 0.0, "Value of lambda for Tikhonov's regularization")
tf.app.flags.DEFINE_integer('suffle_buffer_size', 10000, "Size of buffer for shuffeling data by TF Dataset API")
tf.app.flags.DEFINE_integer('max_to_keep', 3, "max checkpoint for storing")
tf.app.flags.DEFINE_float('dropout_keep_prob', 0.5, "dropout keep probability on traning")
tf.app.flags.DEFINE_integer('checkpoint_every_n_steps', 0, "if 0, checkpoints only every epoch")
class Model():
def __init__(self, vocab_size, max_seq_len,
embedding_size=50,
rnn_num_hiden=256,
rnn_num_layers=2,
attention_hiden_layer_size=128,
batch_size=32,
suffle_buffer_size=100000):
self.keep_prob = tf.placeholder_with_default(tf.constant(1.0), [], name="dropout_keep_prob")
self.learning_rate = tf.placeholder_with_default(tf.constant(1e-4), [], name="learning_rate")
self.ph_seq_len = tf.placeholder(tf.int32, [None, ], name="seq_len")
self.ph_seq_in = tf.placeholder(tf.int32, [None, max_seq_len], name="sequence")
self.ph_labels = tf.placeholder(tf.float32, [None], name="labels")
train_dataset = tf.data.Dataset.from_tensor_slices((self.ph_seq_len, self.ph_seq_in, self.ph_labels)).shuffle(
buffer_size=suffle_buffer_size).batch(batch_size)
self.ph_valid_batch_size = tf.placeholder_with_default(tf.constant(1, dtype=tf.int64), [],
name="valid_batch_size")
valid_dataset = tf.data.Dataset.from_tensor_slices((self.ph_seq_len, self.ph_seq_in, self.ph_labels)).batch(
self.ph_valid_batch_size)
iterator = tf.data.Iterator.from_structure(train_dataset.output_types, train_dataset.output_shapes)
next_elements = iterator.get_next()
self.training_init_op = iterator.make_initializer(train_dataset, name="training_init_op")
self.validation_init_op = iterator.make_initializer(valid_dataset, name="validation_init_op")
seq_len, seq_in, labels = next_elements
embeddings_var = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0), trainable=True)
embedded_seq = tf.nn.embedding_lookup(embeddings_var, seq_in)
rnn_fw_cells = [
tf.contrib.rnn.DropoutWrapper(
tf.nn.rnn_cell.LSTMCell(rnn_num_hiden),
input_keep_prob=self.keep_prob,
output_keep_prob=self.keep_prob,
state_keep_prob=self.keep_prob
) for _ in range(rnn_num_layers)]
rnn_bw_cells = [
tf.contrib.rnn.DropoutWrapper(
tf.nn.rnn_cell.LSTMCell(rnn_num_hiden),
input_keep_prob=self.keep_prob,
output_keep_prob=self.keep_prob,
state_keep_prob=self.keep_prob
) for _ in range(rnn_num_layers)]
outputs, output_state_fw, output_state_bw = tf.contrib.rnn.stack_bidirectional_dynamic_rnn(
rnn_fw_cells,
rnn_bw_cells,
embedded_seq,
sequence_length=seq_len,
dtype=tf.float32)
with tf.variable_scope("pooling_layer"):
self.c1 = tf.layers.conv1d(outputs, rnn_num_hiden*rnn_num_layers*2, 2, padding='valid',
kernel_initializer=tf.glorot_uniform_initializer())
self.c2 = tf.layers.conv1d(self.c1, rnn_num_hiden*rnn_num_layers, 2, padding='valid',
kernel_initializer=tf.glorot_uniform_initializer())
self.c2 = tf.layers.dropout(self.c2, self.keep_prob)
self.avg_pool = tf.contrib.keras.layers.GlobalAveragePooling1D()(self.c2)
self.max_pool = tf.contrib.keras.layers.GlobalMaxPool1D()(self.c2)
with tf.variable_scope("attention"):
hidden_layer = tf.layers.dense(outputs, attention_hiden_layer_size, activation=tf.nn.relu)
logits = tf.layers.dense(hidden_layer, 1, activation=None)
alphas = tf.nn.softmax(logits, axis=1)
self.attention_c = tf.reduce_sum(outputs*alphas, 1)
self.concat_c = tf.concat((self.avg_pool, self.max_pool, self.attention_c), axis=-1)
W = tf.Variable(tf.random_normal([int(self.concat_c.get_shape()[1]), 1]))
b = tf.Variable(tf.random_normal([1]))
self.logits = tf.nn.xw_plus_b(self.concat_c, W, b)
self.prediction = tf.nn.sigmoid(self.logits)
self.prediction = tf.identity(self.prediction, "prediction")
self.loss = tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.stop_gradient(tf.reshape(labels, (-1, 1))),
logits=self.logits)
self.loss = tf.reduce_mean(self.loss)
self.loss = tf.identity(self.loss, "loss")
self.global_step = tf.Variable(0, trainable=False, name="global_step")
self.train_step = tf.contrib.layers.optimize_loss(
loss=self.loss,
optimizer=tf.train.AdamOptimizer,
global_step=self.global_step,
learning_rate=self.learning_rate,
name="train_step",
summaries=['learning_rate', 'loss', 'gradients', 'gradient_norm', 'global_gradient_norm'])
self.train_step = tf.identity(self.train_step, "train_step")
print("Main graph is builded")
self._make_metrics_and_summaries(labels)
print("Metrics and summaries is builded")
def _make_metrics_and_summaries(self, labels):
with tf.variable_scope("metrics_and_summaries"):
_, self.accuracy = tf.metrics.accuracy(labels, predictions=tf.round(self.prediction), name="accuracy")
_, self.roc_auc = tf.metrics.auc(labels, tf.round(self.prediction), name="ROC_AUC")
_, self.roc_prc = tf.metrics.auc(labels, tf.round(self.prediction), name="ROC_PRC",
curve='PR', summation_method='careful_interpolation')
_, self.recall = tf.metrics.recall(labels, tf.round(self.prediction), name="recall")
_, self.precision = tf.metrics.precision(labels, tf.round(self.prediction), name="precision")
labels_acc_summary = tf.summary.scalar("metrics/labels_accuracy", self.accuracy)
recall_summary = tf.summary.scalar("metrics/stream_recall", self.recall)
precision_summary = tf.summary.scalar("metrics/stream_precission", self.precision)
roc_auc_summary = tf.summary.scalar("metrics/stream_roc_auc", self.roc_auc)
roc_auc_summary = tf.summary.scalar("metrics/stream_roc_prc", self.roc_prc)
self.summaries = tf.summary.merge_all()
def main(argv=None):
with np.load(os.path.join(FLAGS.dataset, "train.npz")) as data:
ds_seq_in = data["seq_in"]
ds_label = data["label"]
ds_seq_in_len = data["seq_in_len"]
with np.load(os.path.join(FLAGS.dataset, "test.npz")) as data:
ds_test_seq_in = data["seq_in"]
ds_test_label = data["label"]
ds_test_seq_in_len = data["seq_in_len"]
# Assume that each row of `ds_seq_in` corresponds to the same row as `ds_label` and 'ds_seq_in_len'.
assert ds_seq_in.shape[0] == ds_label.shape[0] == ds_seq_in_len.shape[0]
assert ds_test_seq_in.shape[0] == ds_test_label.shape[0] == ds_test_seq_in_len.shape[0]
if not os.path.exists(FLAGS.run_dir):
os.makedirs(FLAGS.run_dir)
copy2(os.path.join(FLAGS.dataset, "main_vocab.model"), FLAGS.run_dir)
copy2(os.path.join(FLAGS.dataset, "main_vocab.vocab"), FLAGS.run_dir)
copy2(os.path.join(FLAGS.dataset, "stats.json"), FLAGS.run_dir)
sp = spm.SentencePieceProcessor()
sp.Load(FLAGS.run_dir + "/main_vocab.model")
SEQ_IN_VOCABULARY_SIZE = sp.GetPieceSize()
MAX_SEQ_LEN = ds_seq_in.shape[1]
del sp
model = Model(SEQ_IN_VOCABULARY_SIZE, MAX_SEQ_LEN,
embedding_size=FLAGS.embedding_size,
rnn_num_hiden=FLAGS.rnn_num_hiden,
rnn_num_layers=FLAGS.rnn_num_layers,
batch_size=FLAGS.batch_size,
suffle_buffer_size=FLAGS.suffle_buffer_size)
print("Model is builded...")
if not os.path.exists(os.path.join(FLAGS.run_dir, "checkpoints")):
os.mkdir(os.path.join(FLAGS.run_dir, "checkpoints"))
saver = tf.train.Saver(max_to_keep=FLAGS.max_to_keep)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
if not os.path.exists(os.path.join(FLAGS.run_dir, "logs")):
os.mkdir(os.path.join(FLAGS.run_dir, "logs"))
timestamp = str(math.trunc(time.time()))
test_writer = tf.summary.FileWriter(os.path.join(FLAGS.run_dir, "logs", timestamp + "-validation"))
summary_writer = tf.summary.FileWriter(os.path.join(FLAGS.run_dir, "logs", timestamp + "-training"), sess.graph)
def test_and_checkpoint():
# TEST
print("\nTest: \n")
sess.run(model.validation_init_op, feed_dict={model.ph_seq_len: ds_test_seq_in_len,
model.ph_seq_in: ds_test_seq_in,
model.ph_labels: ds_test_label,
model.ph_valid_batch_size: FLAGS.batch_size})
all_acc = []
all_precision = []
all_recall = []
all_roc_auc = []
while True:
try:
loss, accarucy, recall, precision, roc_auc, roc_prc, summaries, step = sess.run([
model.loss,
model.accuracy,
model.recall,
model.precision,
model.roc_auc,
model.roc_prc,
model.summaries,
model.global_step
])
test_writer.add_summary(summaries, step)
# print("Test step: Loss: {:1.3}; Accarucy: {:1.3}; Precision: {:1.3}; Recall: {:1.3}; ROC_AUC: {:1.3}; ROC_PRC: {:1.3}".format(
# loss, accarucy, precision, recall, roc_auc, roc_prc
# ))
all_acc.append(accarucy)
all_precision.append(precision)
all_recall.append(recall)
all_roc_auc.append(roc_auc)
except tf.errors.OutOfRangeError:
break
mean_acc = np.mean(all_acc)
mean_precision = np.mean(all_precision)
mean_recall = np.mean(all_recall)
mean_roc_auc = np.mean(all_roc_auc)
print("Mean accuracy: {}".format(mean_acc))
print("Mean precision: {}".format(mean_precision))
print("Mean recall: {}".format(mean_recall))
print("Mean ROC AUC: {}".format(mean_roc_auc))
timestamp = str(math.trunc(time.time()))
saved_file = saver.save(sess, os.path.join(FLAGS.run_dir, "checkpoints", 'model_' + timestamp),
global_step=step)
print("Saved file: " + saved_file)
model_hash = calculate_model_hash(tf.train.latest_checkpoint(os.path.join(FLAGS.run_dir, "checkpoints")))
with open(os.path.join(FLAGS.run_dir, "stats.json"), "r") as f:
stats = json.loads(f.read())
stats.update({
"step": int(step),
"test_accuracy": float(mean_acc),
"test_precision": float(mean_precision),
"test_recall": float(mean_recall),
"model": model_hash,
"batch_size": FLAGS.batch_size,
"time_of_saving": time.time()})
with open(os.path.join(FLAGS.run_dir, "stats.json"), "w") as f:
f.write(json.dumps(stats))
step = 0
for eid in range(FLAGS.max_epoches):
print("Epoch: ", eid)
# TRAIN
sess.run(model.training_init_op, feed_dict={model.ph_seq_len: ds_seq_in_len,
model.ph_seq_in: ds_seq_in,
model.ph_labels: ds_label})
while True:
try:
if step % 100 == 0 or step < 10:
_, loss, accarucy, recall, precision, roc_auc, roc_prc, summaries, step = sess.run([
model.train_step,
model.loss,
model.accuracy,
model.recall,
model.precision,
model.roc_auc,
model.roc_prc,
model.summaries,
model.global_step
])
print("Step: {:3}; Loss: {:1.3}; Accarucy: {:1.3}; Precision: {:1.3}; Recall: {:1.3}; ROC_AUC: {:1.3}; ROC_PRC: {:1.3}".format(
step, loss, accarucy, precision, recall, roc_auc, roc_prc))
summary_writer.add_summary(summaries, step)
else:
_, step = sess.run([model.train_step, model.global_step], feed_dict={model.keep_prob: 0.5})
if FLAGS.checkpoint_every_n_steps != 0 and step % FLAGS.checkpoint_every_n_steps == 0:
test_and_checkpoint()
except tf.errors.OutOfRangeError:
break
test_and_checkpoint()
if __name__ == '__main__':
tf.app.run()