Skip to content

Latest commit

 

History

History
46 lines (32 loc) · 1.39 KB

README.md

File metadata and controls

46 lines (32 loc) · 1.39 KB

Introduction

This repository is a reproduce code for Real-world anomaly detection in surveillance videos (CVPR 2018). https://openaccess.thecvf.com/content_cvpr_2018/html/Sultani_Real-World_Anomaly_Detection_CVPR_2018_paper.html

Requirements

  • Python 3
  • CUDA
  • numpy
  • tqdm
  • PyTorch (1.2)
  • torchvision
    Recommend: the environment can be established by run
conda env create -f environment.yaml

Data preparation

  1. Download the [c3d features][https://github.com/wanboyang/anomly_feature.pytorch].
  2. Running the clip2segment.py get feature segments(32 segments for one video) and change the "dataset_path" to you/path/data

Training

python main.py --dataset_name UCF_Crime --feature_size 4096 --feature_modal rgb --feature_layer fc6
python main.py --dataset_name shanghaitech --feature_size 4096 --feature_modal rgb --feature_layer fc6
python main.py --dataset_name UCSDPed2 --feature_size 4096 --feature_modal rgb --feature_layer fc6 --k 32 --sample_size 4
python main.py --dataset_name ARD2000 --device 1 --feature_size 8192 --feature_modal rgb --feature_layer pool5 --feature_pretrain_model c3d

The models and testing results will be created on ./ckpt and ./results respectively

Acknowledgements

Thanks the contribution of W-TALC and awesome PyTorch team.