forked from netease-youdao/QAnything
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.sh
293 lines (259 loc) · 14.2 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#!/bin/bash
# 函数:更新或追加键值对到.env文件
update_or_append_to_env() {
local key=$1
local value=$2
local env_file=".env"
# 检查键是否存在于.env文件中
if grep -q "^${key}=" "$env_file"; then
# 如果键存在,则更新它的值
sed -i "/^${key}=/c\\${key}=${value}" "$env_file"
else
# 如果键不存在,则追加键值对到文件
echo "${key}=${value}" >> "$env_file"
fi
}
script_name=$(basename "$0")
usage() {
echo "Usage: $script_name [-c <llm_api>] [-i <device_id>] [-b <runtime_backend>] [-m <model_name>] [-t <conv_template>] [-p <tensor_parallel>] [-r <gpu_memory_utilization>] [-h]"
echo " -c : Options {local, cloud} to specify the llm API mode, default is 'local'. If set to '-c cloud', please mannually set the environments {OPENAI_API_KEY, OPENAI_API_BASE, OPENAI_API_MODEL_NAME, OPENAI_API_CONTEXT_LENGTH} into .env fisrt in run.sh"
echo " -i <device_id>: Specify argument GPU device_id"
echo " -b <runtime_backend>: Specify argument LLM inference runtime backend, options={default, hf, vllm}"
echo " -m <model_name>: Specify argument the path to load LLM model using FastChat serve API, options={Qwen-7B-Chat, deepseek-llm-7b-chat, ...}"
echo " -t <conv_template>: Specify argument the conversation template according to the LLM model when using FastChat serve API, options={qwen-7b-chat, deepseek-chat, ...}"
echo " -p <tensor_parallel>: Use options {1, 2} to set tensor parallel parameters for vllm backend when using FastChat serve API, default tensor_parallel=1"
echo " -r <gpu_memory_utilization>: Specify argument gpu_memory_utilization (0,1] for vllm backend when using FastChat serve API, default gpu_memory_utilization=0.81"
echo " -h: Display help usage message. For more information, please refer to docs/QAnything_Startup_Usage_README.md"
echo '
| Service Startup Command | GPUs | LLM Runtime Backend | LLM model |
| --------------------------------------------------------------------------------------- | -----|--------------------------| -------------------------------- |
| ```bash ./run.sh -c cloud -i 0 -b default``` | 1 | OpenAI API | OpenAI API |
| ```bash ./run.sh -c local -i 0 -b default``` | 1 | FasterTransformer | Qwen-7B-QAnything |
| ```bash ./run.sh -c local -i 0 -b hf -m MiniChat-2-3B -t minichat``` | 1 | Huggingface Transformers | Public LLM (e.g., MiniChat-2-3B) |
| ```bash ./run.sh -c local -i 0 -b vllm -m MiniChat-2-3B -t minichat -p 1 -r 0.81``` | 1 | vllm | Public LLM (e.g., MiniChat-2-3B) |
| ```bash ./run.sh -c local -i 0,1 -b default``` | 2 | FasterTransformer | Qwen-7B-QAnything |
| ```bash ./run.sh -c local -i 0,1 -b hf -m MiniChat-2-3B -t minichat``` | 2 | Huggingface Transformers | Public LLM (e.g., MiniChat-2-3B) |
| ```bash ./run.sh -c local -i 0,1 -b vllm -m MiniChat-2-3B -t minichat -p 1 -r 0.81``` | 2 | vllm | Public LLM (e.g., MiniChat-2-3B) |
| ```bash ./run.sh -c local -i 0,1 -b vllm -m MiniChat-2-3B -t minichat -p 2 -r 0.81``` | 2 | vllm | Public LLM (e.g., MiniChat-2-3B) |
Note: You can choose the most suitable Service Startup Command based on your own device conditions.
(1) Local Embedding/Rerank will run on device gpu_id_1 when setting "-i 0,1", otherwise using gpu_id_0 as default.
(2) When setting "-c cloud" that will use local Embedding/Rerank and OpenAI LLM API, which only requires about 4GB VRAM (recommend for GPU device VRAM <= 8GB).
(3) When you use OpenAI LLM API, you will be required to enter {OPENAI_API_KEY, OPENAI_API_BASE, OPENAI_API_MODEL_NAME, OPENAI_API_CONTEXT_LENGTH} immediately.
(4) "-b hf" is the most recommended way for running public LLM inference for its compatibility but with poor performance.
(5) When you choose a public Chat LLM for QAnything system, you should take care of a more suitable **PROMPT_TEMPLATE** (/path/to/QAnything/qanything_kernel/configs/model_config.py) setting considering different LLM models.
'
exit 1
}
# 检查master分支是否有新代码
# 定义颜色
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
NC='\033[0m' # No Color
# 定义醒目的提示信息
print_important_notice() {
echo -e "${YELLOW}====================================================${NC}"
echo -e "${YELLOW}******************** 重要提示 ********************${NC}"
echo -e "${YELLOW}====================================================${NC}"
echo
echo -e "${RED}检测到master分支有新的代码更新,如需体验最新的功能,可以手动执行 git pull 来同步最新的代码。${NC}"
echo
sleep 5
}
# 获取最新的远程仓库信息
git fetch origin master
# 获取本地master分支的最新提交
LOCAL=$(git rev-parse master)
# 获取远程master分支的最新提交
REMOTE=$(git rev-parse origin/master)
if [ $LOCAL != $REMOTE ]; then
# 本地分支与远程分支不一致,需要更新
print_important_notice
else
echo -e "${GREEN}当前master分支已是最新,无需更新。${NC}"
fi
llm_api="local"
device_id="0"
runtime_backend="default"
model_name=""
conv_template=""
tensor_parallel=1
gpu_memory_utilization=0.81
# 解析命令行参数
while getopts ":c:i:b:m:t:p:r:h" opt; do
case $opt in
c) llm_api=$OPTARG ;;
i) device_id=$OPTARG ;;
b) runtime_backend=$OPTARG ;;
m) model_name=$OPTARG ;;
t) conv_template=$OPTARG ;;
p) tensor_parallel=$OPTARG ;;
r) gpu_memory_utilization=$OPTARG ;;
h) usage ;;
*) usage ;;
esac
done
# 获取大模型B数
if [ $llm_api = 'cloud' ]; then
model_size='0B'
elif [ $runtime_backend = 'default' ]; then
model_size='7B'
else
read -p "请输入您使用的大模型B数(示例:1.8B/3B/7B): " model_size
# 检查是否合法,必须输入数字+B的形式,可以是小数
if ! [[ $model_size =~ ^[0-9]+(\.[0-9]+)?B$ ]]; then
echo "Invalid model size. Please enter a number like '1.8B' or '3B' or '7B'."
exit 1
fi
fi
echo "model_size=$model_size"
update_or_append_to_env "MODEL_SIZE" "$model_size"
gpu_id1=0
gpu_id2=0
# 判断命令行参数
if [[ -n "$device_id" ]]; then
# 如果传入参数,分割成两个GPU ID
IFS=',' read -ra gpu_ids <<< "$device_id"
gpu_id1=${gpu_ids[0]}
gpu_id2=${gpu_ids[1]:-$gpu_id1} # 如果没有第二个ID,则默认使用第一个ID
fi
echo "GPUID1=${gpu_id1}, GPUID2=${gpu_id2}, device_id=${device_id}"
# 检查GPU ID是否合法
if ! [[ $gpu_id1 =~ ^[0-9]+$ ]] || ! [[ $gpu_id2 =~ ^[0-9]+$ ]]; then
echo "Invalid GPU IDs. Please enter IDs like '0' or '0,1'."
exit 1
fi
update_or_append_to_env "GPUID1" "$gpu_id1"
update_or_append_to_env "GPUID2" "$gpu_id2"
if [ $llm_api = 'cloud' ]; then
need_input_openai_info=1
OPENAI_API_KEY=$(grep OPENAI_API_KEY .env | cut -d '=' -f2)
# 如果.env中已存在OPENAI_API_KEY的值(不为空),则询问用户是否使用上次默认值:$OPENAI_API_KEY,$OPENAI_API_BASE, $OPENAI_API_MODEL_NAME, $OPENAI_API_CONTEXT_LENGTH
if [ -n "$OPENAI_API_KEY" ]; then
read -p "Do you want to use the previous OPENAI_API_KEY: $OPENAI_API_KEY? (yes/no) 是否使用上次的OPENAI_API_KEY: $OPENAI_API_KEY?(yes/no) 回车默认选yes,请输入:" use_previous
use_previous=${use_previous:-yes}
if [ "$use_previous" = "yes" ]; then
need_input_openai_info=0
fi
fi
if [ $need_input_openai_info -eq 1 ]; then
read -p "Please enter OPENAI_API_KEY: " OPENAI_API_KEY
read -p "Please enter OPENAI_API_BASE (default: https://api.openai.com/v1):" OPENAI_API_BASE
read -p "Please enter OPENAI_API_MODEL_NAME (default: gpt-3.5-turbo):" OPENAI_API_MODEL_NAME
read -p "Please enter OPENAI_API_CONTEXT_LENGTH (default: 4096):" OPENAI_API_CONTEXT_LENGTH
if [ -z "$OPENAI_API_KEY" ]; then # 如果OPENAI_API_KEY为空,则退出
echo "OPENAI_API_KEY is empty, please enter OPENAI_API_KEY."
exit 1
fi
if [ -z "$OPENAI_API_BASE" ]; then # 如果OPENAI_API_BASE为空,则设置默认值
OPENAI_API_BASE="https://api.openai.com/v1"
fi
if [ -z "$OPENAI_API_MODEL_NAME" ]; then # 如果OPENAI_API_MODEL_NAME为空,则设置默认值
OPENAI_API_MODEL_NAME="gpt-3.5-turbo"
fi
if [ -z "$OPENAI_API_CONTEXT_LENGTH" ]; then # 如果OPENAI_API_CONTEXT_LENGTH为空,则设置默认值
OPENAI_API_CONTEXT_LENGTH=4096
fi
update_or_append_to_env "OPENAI_API_KEY" "$OPENAI_API_KEY"
update_or_append_to_env "OPENAI_API_BASE" "$OPENAI_API_BASE"
update_or_append_to_env "OPENAI_API_MODEL_NAME" "$OPENAI_API_MODEL_NAME"
update_or_append_to_env "OPENAI_API_CONTEXT_LENGTH" "$OPENAI_API_CONTEXT_LENGTH"
else
OPENAI_API_BASE=$(grep OPENAI_API_BASE .env | cut -d '=' -f2)
OPENAI_API_MODEL_NAME=$(grep OPENAI_API_MODEL_NAME .env | cut -d '=' -f2)
OPENAI_API_CONTEXT_LENGTH=$(grep OPENAI_API_CONTEXT_LENGTH .env | cut -d '=' -f2)
echo "使用上次的配置:"
echo "OPENAI_API_KEY: $OPENAI_API_KEY"
echo "OPENAI_API_BASE: $OPENAI_API_BASE"
echo "OPENAI_API_MODEL_NAME: $OPENAI_API_MODEL_NAME"
echo "OPENAI_API_CONTEXT_LENGTH: $OPENAI_API_CONTEXT_LENGTH"
fi
fi
echo "llm_api is set to [$llm_api]"
echo "device_id is set to [$device_id]"
echo "runtime_backend is set to [$runtime_backend]"
echo "model_name is set to [$model_name]"
echo "conv_template is set to [$conv_template]"
echo "tensor_parallel is set to [$tensor_parallel]"
echo "gpu_memory_utilization is set to [$gpu_memory_utilization]"
update_or_append_to_env "LLM_API" "$llm_api"
update_or_append_to_env "DEVICE_ID" "$device_id"
update_or_append_to_env "RUNTIME_BACKEND" "$runtime_backend"
update_or_append_to_env "MODEL_NAME" "$model_name"
update_or_append_to_env "CONV_TEMPLATE" "$conv_template"
update_or_append_to_env "TP" "$tensor_parallel"
update_or_append_to_env "GPU_MEM_UTILI" "$gpu_memory_utilization"
# 读取环境变量中的用户信息
source .env
# 检查是否存在USER_IP
if [ -z "${USER_IP}" ]; then
# 如果USER_IP不存在,询问用户并保存配置
read -p "Are you running the code on a remote server or on your local machine? (remotelocal) 您是在云服务器上还是本地机器上启动代码?(remote/local) " answer
if [[ $answer == "local" || $answer == "本地" ]]; then
ip="localhost"
else
read -p "Please enter the server IP address 请输入服务器公网IP地址(示例:10.234.10.144): " ip
echo "当前设置的远程服务器IP地址为 $ip, QAnything启动后,本地前端服务(浏览器打开[http://$ip:5052/qanything/])将远程访问[http://$ip:8777]上的后端服务,请知悉!"
sleep 5
fi
# 保存配置
update_or_append_to_env "USER_IP" "$ip"
else
# 读取上次的配置
ip=$USER_IP
read -p "Do you want to use the previous ip: $ip? (yes/no) 是否使用上次的ip: $host?(yes/no) 回车默认选yes,请输入:" use_previous
use_previous=${use_previous:-yes}
if [[ $use_previous != "yes" && $use_previous != "是" ]]; then
read -p "Are you running the code on a remote server or on your local machine? (remote/local) 您是在远程服务器上还是本地机器上启动代码?(remote/local) " answer
if [[ $answer == "local" || $answer == "本地" ]]; then
ip="localhost"
else
read -p "Please enter the server IP address 请输入服务器公网IP地址(示例:10.234.10.144): " ip
echo "当前设置的远程服务器IP地址为 $ip, QAnything启动后,本地前端服务(浏览器打开[http://$ip:5052/qanything/])将远程访问[http://$ip:8777]上的后端服务,请知悉!"
sleep 5
fi
# 保存新的配置
update_or_append_to_env "USER_IP" "$ip"
fi
fi
if [ -e /proc/version ]; then
if grep -qi microsoft /proc/version || grep -qi MINGW /proc/version; then
if grep -qi microsoft /proc/version; then
echo "Running under WSL"
if [ -z "${WIN_VERSION}" ]; then
read -p "请输入Windows版本(WIN11/WIN10)回车默认选WIN11,请输入:" win_version
win_version=${win_version:-WIN11}
if [[ $win_version == "WIN11" || $win_version == "WIN10" ]]; then
update_or_append_to_env "WIN_VERSION" "$win_version"
else
echo "目前只支持WIN11和WIN10,请选择其一输入"
exit 1
fi
fi
# win10系统不支持qanything-7b模型
if [[ $WIN_VERSION == "WIN10" ]]; then
if [[ $runtime_backend == "default" && $llm_api == "local" ]] || [[ $model_name == "Qwen-7B-QAnything" ]]; then
echo "当前系统为Windows 10,不支持Qwen-7B-QAnything模型,请重新选择其他模型,可参考:docs/QAnything_Startup_Usage_README.md"
exit 1
fi
fi
else
echo "Running under git bash"
fi
if docker-compose -p user -f docker-compose-windows.yaml down |& tee /dev/tty | grep -q "services.qanything_local.deploy.resources.reservations value 'devices' does not match any of the regexes"; then
echo "检测到 Docker Compose 版本过低,请升级到v2.23.3或更高版本。执行docker-compose -v查看版本。"
fi
docker-compose -p user -f docker-compose-windows.yaml up -d
docker-compose -p user -f docker-compose-windows.yaml logs -f qanything_local
else
echo "Running under native Linux"
if docker-compose -p user -f docker-compose-linux.yaml down |& tee /dev/tty | grep -q "services.qanything_local.deploy.resources.reservations value 'devices' does not match any of the regexes"; then
echo "检测到 Docker Compose 版本过低,请升级到v2.23.3或更高版本。执行docker-compose -v查看版本。"
fi
docker-compose -p user -f docker-compose-linux.yaml up -d
docker-compose -p user -f docker-compose-linux.yaml logs -f qanything_local
# 检查日志输出
fi
else
echo "/proc/version 文件不存在。请确认自己位于Linux或Windows的WSL环境下"
fi