-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsoftpool.py
241 lines (203 loc) · 8.62 KB
/
softpool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
from torch.autograd import Variable
import numpy as np
import torch.nn.functional as F
class Periodics(nn.Module):
def __init__(self, dim_input=2, dim_output=512, is_first=True):
super(Periodics, self).__init__()
self.dim_input = dim_input
self.dim_output = dim_output
self.is_first = is_first
self.with_frequency = True
self.with_phase = True
# Omega determines the upper frequencies
self.omega_0 = 30
if self.with_frequency:
if self.with_phase:
self.Li = nn.Conv1d(
self.dim_input, self.dim_output, 1,
bias=self.with_phase).cuda()
else:
self.Li = nn.Conv1d(
self.dim_input,
self.dim_output // 2,
1,
bias=self.with_phase).cuda()
# nn.init.normal_(B.weight, std=10.0)
with torch.no_grad():
if self.is_first:
self.Li.weight.uniform_(-1 / self.dim_input,
1 / self.dim_input)
else:
self.Li.weight.uniform_(
-np.sqrt(6 / self.dim_input) / self.omega_0,
np.sqrt(6 / self.dim_input) / self.omega_0)
else:
self.Li = nn.Conv1d(self.dim_input, self.dim_output, 1).cuda()
self.BN = nn.BatchNorm1d(self.dim_output).cuda()
def filter(self):
filters = torch.cat([
torch.ones(1, self.dim_output // 32 * 32),
torch.zeros(1, self.dim_output // 32 * 0)
], 1).cuda()
filters = torch.unsqueeze(filters, 2)
return filters
def forward(self, x):
# here are some options to check how to form the fourier feature
lp_filter = self.filter()
if self.with_frequency:
if self.with_phase:
sinside = torch.sin(self.Li(x) * self.omega_0)
return sinside
else:
"""
here filter could be applied
"""
sinside = torch.sin(self.Li(x) * self.omega_0)
cosside = torch.cos(self.Li(x) * self.omega_0)
return torch.cat([sinside, cosside], 1)
else:
return F.relu(self.BN(self.Li(x)))
# Produce a set of pointnet features in several sorted cloud
def train2cabins(windows, num_cabin=8):
size_bth = list(windows.shape)[0]
size_feat = list(windows.shape)[1]
regions = list(windows.shape)[2]
num_points = list(windows.shape)[3]
cabins = torch.zeros(size_bth, size_feat, regions, num_cabin).cuda()
points_cabin = num_points // num_cabin
for idx in range(num_cabin):
cabins[:, :, :, idx] = torch.max(
windows[:, :, :, idx * points_cabin:(idx + 1) * points_cabin],
dim=3,
keepdim=False)[0]
return cabins
class Sorter(nn.Module):
def __init__(self, dim_in, dim_out):
super(Sorter, self).__init__()
self.conv1d = torch.nn.Conv1d(dim_in, dim_out, 1).cuda()
def forward(self, x):
val_activa = self.conv1d(x)
id_activa = torch.argmax(val_activa, dim=1)
return val_activa, id_activa
class SoftPool(nn.Module):
def __init__(self, regions=16, cabins=8, sp_ratio=4, size_feat=256):
super(SoftPool, self).__init__()
self.regions = regions
self.num_cabin = cabins
self.sp_ratio = sp_ratio
self.size_feat = size_feat
self.conv2d_1 = nn.Conv2d(
self.size_feat, self.size_feat, kernel_size=(1, 3),
stride=(1, 1)).cuda()
# cabin -2
self.conv2d_2 = nn.Conv2d(
self.size_feat, self.size_feat, kernel_size=(1, 3),
stride=(1, 1)).cuda()
self.conv2d_3 = nn.Conv2d(
self.size_feat,
self.size_feat,
kernel_size=(1, self.num_cabin - 2 * (3 - 1)),
stride=(1, 1)).cuda()
self.conv2d_5 = nn.Conv2d(
self.size_feat,
self.size_feat,
kernel_size=(self.regions, 1),
stride=(1, 1)).cuda()
self.sorter = Sorter(self.size_feat, self.regions)
def forward(self, x):
[self.size_bth, self.size_feat, self.pnt_per_sort] = list(x.shape)
self.pnt_per_sort //= self.sp_ratio
val_activa, id_activa = self.sorter(x)
# initialize empty space for softpool feature
sp_cube = torch.zeros(self.size_bth, self.size_feat, self.regions,
self.pnt_per_sort).cuda()
sp_idx = torch.zeros(self.size_bth, self.regions + 3, self.regions,
self.pnt_per_sort).cuda()
for region in range(self.regions):
x_val, x_idx = torch.sort(
val_activa[:, region, :], dim=1, descending=True)
index = x_idx[:, :self.pnt_per_sort].unsqueeze(1).repeat(
1, self.size_feat, 1)
sp_cube[:, :, region, :] = torch.gather(x, dim=2, index=index)
sp_idx[:, :, region, :] = x_idx[:, :self.pnt_per_sort].unsqueeze(
1).repeat(1, self.regions + 3, 1)
# local pointnet feature
points_cabin = self.pnt_per_sort // self.num_cabin
cabins = train2cabins(sp_cube, self.num_cabin)
# we need to use succession manner to repeat cabin to fit with cube
sp_windows = torch.repeat_interleave(
cabins, repeats=points_cabin, dim=3)
# merge cabins in train
trains = self.conv2d_3(self.conv2d_2(self.conv2d_1(cabins)))
# we need to use succession manner to repeat cabin to fit with cube
sp_trains = trains.repeat(1, 1, 1, self.pnt_per_sort)
# now make a station
station = self.conv2d_5(trains)
sp_station = station.repeat(1, 1, self.regions, self.pnt_per_sort)
scope = 'local'
if scope == 'global':
sp_cube = torch.cat((sp_cube, sp_windows, sp_trains, sp_station),
1).contiguous()
return sp_cube, sp_idx, cabins, id_activa
class SoftPoolFeat(nn.Module):
def __init__(self, num_points=8192, regions=16, sp_points=2048,
sp_ratio=8):
super(SoftPoolFeat, self).__init__()
self.conv1 = torch.nn.Conv1d(3, 64, 1)
self.conv2 = torch.nn.Conv1d(64, 128, 1)
self.conv3 = torch.nn.Conv1d(128, 256, 1)
self.bn1 = torch.nn.BatchNorm1d(64)
self.bn2 = torch.nn.BatchNorm1d(128)
self.bn3 = torch.nn.BatchNorm1d(256)
"""
self.fourier_map1 = Periodics(dim_input=3, dim_output=32)
self.fourier_map2 = Periodics(
dim_input=32, dim_output=128, is_first=False)
self.fourier_map3 = Periodics(
dim_input=128, dim_output=128, is_first=False)
"""
self.num_points = num_points
self.regions = regions
self.sp_points = sp_points // sp_ratio
self.softpool = SoftPool(self.regions, cabins=8, sp_ratio=sp_ratio)
def mlp(self, inputs):
"""
x = self.fourier_map1(inputs)
x = self.fourier_map2(x)
x = self.fourier_map3(x)
"""
x = F.relu(self.bn1(self.conv1(inputs)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.bn3(self.conv3(x))
return x
def forward(self, x, x_seg=None):
part = x
x = self.mlp(x)
sp_cube, sp_idx, cabins, id_activa = self.softpool(x)
# transform
id_activa = torch.nn.functional.one_hot(
id_activa.to(torch.int64), self.regions).transpose(1, 2)
if x_seg is None:
point_wi_seg = torch.cat((id_activa.float(), part), 1)
else:
point_wi_seg = torch.cat((x_seg.float(), part), 1)
"""
point_wi_seg = point_wi_seg.transpose(2, 1)
point_wi_seg = torch.bmm(point_wi_seg, trans)
point_wi_seg = point_wi_seg.transpose(2, 1)
"""
point_wi_seg = point_wi_seg.unsqueeze(2).repeat(1, 1, self.regions, 1)
point_wi_seg = torch.gather(point_wi_seg, dim=3, index=sp_idx.long())
feature = torch.cat((sp_cube, point_wi_seg), 1).contiguous()
feature = feature.view(feature.shape[0], feature.shape[1], 1,
self.regions * self.sp_points)
sp_cube = sp_cube.view(sp_cube.shape[0], sp_cube.shape[1], 1,
self.regions * self.sp_points)
sp_idx = sp_idx.view(sp_idx.shape[0], sp_idx.shape[1], 1,
self.regions * self.sp_points)
# return feature, cabins, sp_idx
return sp_cube, cabins, sp_idx