diff --git a/examples/ARToolkitNFT_ES6_gltf_example.html b/examples/ARToolkitNFT_ES6_gltf_example.html
index 9bdbfaf..5e72ed9 100644
--- a/examples/ARToolkitNFT_ES6_gltf_example.html
+++ b/examples/ARToolkitNFT_ES6_gltf_example.html
@@ -4,16 +4,11 @@
ARToolkitNFT_ES6 example
-
diff --git a/examples/js/third_party/three.js/loaders/GLTFLoader.js b/examples/js/third_party/three.js/loaders/GLTFLoader.js
new file mode 100644
index 0000000..e39cbcb
--- /dev/null
+++ b/examples/js/third_party/three.js/loaders/GLTFLoader.js
@@ -0,0 +1,4725 @@
+import {
+ AnimationClip,
+ Bone,
+ Box3,
+ BufferAttribute,
+ BufferGeometry,
+ ClampToEdgeWrapping,
+ Color,
+ ColorManagement,
+ DirectionalLight,
+ DoubleSide,
+ FileLoader,
+ FrontSide,
+ Group,
+ ImageBitmapLoader,
+ InstancedMesh,
+ InterleavedBuffer,
+ InterleavedBufferAttribute,
+ Interpolant,
+ InterpolateDiscrete,
+ InterpolateLinear,
+ Line,
+ LineBasicMaterial,
+ LineLoop,
+ LineSegments,
+ LinearFilter,
+ LinearMipmapLinearFilter,
+ LinearMipmapNearestFilter,
+ LinearSRGBColorSpace,
+ Loader,
+ LoaderUtils,
+ Material,
+ MathUtils,
+ Matrix4,
+ Mesh,
+ MeshBasicMaterial,
+ MeshPhysicalMaterial,
+ MeshStandardMaterial,
+ MirroredRepeatWrapping,
+ NearestFilter,
+ NearestMipmapLinearFilter,
+ NearestMipmapNearestFilter,
+ NumberKeyframeTrack,
+ Object3D,
+ OrthographicCamera,
+ PerspectiveCamera,
+ PointLight,
+ Points,
+ PointsMaterial,
+ PropertyBinding,
+ Quaternion,
+ QuaternionKeyframeTrack,
+ RepeatWrapping,
+ Skeleton,
+ SkinnedMesh,
+ Sphere,
+ SpotLight,
+ Texture,
+ TextureLoader,
+ TriangleFanDrawMode,
+ TriangleStripDrawMode,
+ Vector2,
+ Vector3,
+ VectorKeyframeTrack,
+ SRGBColorSpace,
+ InstancedBufferAttribute
+} from 'three';
+import { toTrianglesDrawMode } from '../utils/BufferGeometryUtils.js';
+
+class GLTFLoader extends Loader {
+
+ constructor( manager ) {
+
+ super( manager );
+
+ this.dracoLoader = null;
+ this.ktx2Loader = null;
+ this.meshoptDecoder = null;
+
+ this.pluginCallbacks = [];
+
+ this.register( function ( parser ) {
+
+ return new GLTFMaterialsClearcoatExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFMaterialsDispersionExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFTextureBasisUExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFTextureWebPExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFTextureAVIFExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFMaterialsSheenExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFMaterialsTransmissionExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFMaterialsVolumeExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFMaterialsIorExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFMaterialsEmissiveStrengthExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFMaterialsSpecularExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFMaterialsIridescenceExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFMaterialsAnisotropyExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFMaterialsBumpExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFLightsExtension( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFMeshoptCompression( parser );
+
+ } );
+
+ this.register( function ( parser ) {
+
+ return new GLTFMeshGpuInstancing( parser );
+
+ } );
+
+ }
+
+ load( url, onLoad, onProgress, onError ) {
+
+ const scope = this;
+
+ let resourcePath;
+
+ if ( this.resourcePath !== '' ) {
+
+ resourcePath = this.resourcePath;
+
+ } else if ( this.path !== '' ) {
+
+ // If a base path is set, resources will be relative paths from that plus the relative path of the gltf file
+ // Example path = 'https://my-cnd-server.com/', url = 'assets/models/model.gltf'
+ // resourcePath = 'https://my-cnd-server.com/assets/models/'
+ // referenced resource 'model.bin' will be loaded from 'https://my-cnd-server.com/assets/models/model.bin'
+ // referenced resource '../textures/texture.png' will be loaded from 'https://my-cnd-server.com/assets/textures/texture.png'
+ const relativeUrl = LoaderUtils.extractUrlBase( url );
+ resourcePath = LoaderUtils.resolveURL( relativeUrl, this.path );
+
+ } else {
+
+ resourcePath = LoaderUtils.extractUrlBase( url );
+
+ }
+
+ // Tells the LoadingManager to track an extra item, which resolves after
+ // the model is fully loaded. This means the count of items loaded will
+ // be incorrect, but ensures manager.onLoad() does not fire early.
+ this.manager.itemStart( url );
+
+ const _onError = function ( e ) {
+
+ if ( onError ) {
+
+ onError( e );
+
+ } else {
+
+ console.error( e );
+
+ }
+
+ scope.manager.itemError( url );
+ scope.manager.itemEnd( url );
+
+ };
+
+ const loader = new FileLoader( this.manager );
+
+ loader.setPath( this.path );
+ loader.setResponseType( 'arraybuffer' );
+ loader.setRequestHeader( this.requestHeader );
+ loader.setWithCredentials( this.withCredentials );
+
+ loader.load( url, function ( data ) {
+
+ try {
+
+ scope.parse( data, resourcePath, function ( gltf ) {
+
+ onLoad( gltf );
+
+ scope.manager.itemEnd( url );
+
+ }, _onError );
+
+ } catch ( e ) {
+
+ _onError( e );
+
+ }
+
+ }, onProgress, _onError );
+
+ }
+
+ setDRACOLoader( dracoLoader ) {
+
+ this.dracoLoader = dracoLoader;
+ return this;
+
+ }
+
+ setKTX2Loader( ktx2Loader ) {
+
+ this.ktx2Loader = ktx2Loader;
+ return this;
+
+ }
+
+ setMeshoptDecoder( meshoptDecoder ) {
+
+ this.meshoptDecoder = meshoptDecoder;
+ return this;
+
+ }
+
+ register( callback ) {
+
+ if ( this.pluginCallbacks.indexOf( callback ) === - 1 ) {
+
+ this.pluginCallbacks.push( callback );
+
+ }
+
+ return this;
+
+ }
+
+ unregister( callback ) {
+
+ if ( this.pluginCallbacks.indexOf( callback ) !== - 1 ) {
+
+ this.pluginCallbacks.splice( this.pluginCallbacks.indexOf( callback ), 1 );
+
+ }
+
+ return this;
+
+ }
+
+ parse( data, path, onLoad, onError ) {
+
+ let json;
+ const extensions = {};
+ const plugins = {};
+ const textDecoder = new TextDecoder();
+
+ if ( typeof data === 'string' ) {
+
+ json = JSON.parse( data );
+
+ } else if ( data instanceof ArrayBuffer ) {
+
+ const magic = textDecoder.decode( new Uint8Array( data, 0, 4 ) );
+
+ if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) {
+
+ try {
+
+ extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data );
+
+ } catch ( error ) {
+
+ if ( onError ) onError( error );
+ return;
+
+ }
+
+ json = JSON.parse( extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content );
+
+ } else {
+
+ json = JSON.parse( textDecoder.decode( data ) );
+
+ }
+
+ } else {
+
+ json = data;
+
+ }
+
+ if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) {
+
+ if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.' ) );
+ return;
+
+ }
+
+ const parser = new GLTFParser( json, {
+
+ path: path || this.resourcePath || '',
+ crossOrigin: this.crossOrigin,
+ requestHeader: this.requestHeader,
+ manager: this.manager,
+ ktx2Loader: this.ktx2Loader,
+ meshoptDecoder: this.meshoptDecoder
+
+ } );
+
+ parser.fileLoader.setRequestHeader( this.requestHeader );
+
+ for ( let i = 0; i < this.pluginCallbacks.length; i ++ ) {
+
+ const plugin = this.pluginCallbacks[ i ]( parser );
+
+ if ( ! plugin.name ) console.error( 'THREE.GLTFLoader: Invalid plugin found: missing name' );
+
+ plugins[ plugin.name ] = plugin;
+
+ // Workaround to avoid determining as unknown extension
+ // in addUnknownExtensionsToUserData().
+ // Remove this workaround if we move all the existing
+ // extension handlers to plugin system
+ extensions[ plugin.name ] = true;
+
+ }
+
+ if ( json.extensionsUsed ) {
+
+ for ( let i = 0; i < json.extensionsUsed.length; ++ i ) {
+
+ const extensionName = json.extensionsUsed[ i ];
+ const extensionsRequired = json.extensionsRequired || [];
+
+ switch ( extensionName ) {
+
+ case EXTENSIONS.KHR_MATERIALS_UNLIT:
+ extensions[ extensionName ] = new GLTFMaterialsUnlitExtension();
+ break;
+
+ case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
+ extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader );
+ break;
+
+ case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
+ extensions[ extensionName ] = new GLTFTextureTransformExtension();
+ break;
+
+ case EXTENSIONS.KHR_MESH_QUANTIZATION:
+ extensions[ extensionName ] = new GLTFMeshQuantizationExtension();
+ break;
+
+ default:
+
+ if ( extensionsRequired.indexOf( extensionName ) >= 0 && plugins[ extensionName ] === undefined ) {
+
+ console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' );
+
+ }
+
+ }
+
+ }
+
+ }
+
+ parser.setExtensions( extensions );
+ parser.setPlugins( plugins );
+ parser.parse( onLoad, onError );
+
+ }
+
+ parseAsync( data, path ) {
+
+ const scope = this;
+
+ return new Promise( function ( resolve, reject ) {
+
+ scope.parse( data, path, resolve, reject );
+
+ } );
+
+ }
+
+}
+
+/* GLTFREGISTRY */
+
+function GLTFRegistry() {
+
+ let objects = {};
+
+ return {
+
+ get: function ( key ) {
+
+ return objects[ key ];
+
+ },
+
+ add: function ( key, object ) {
+
+ objects[ key ] = object;
+
+ },
+
+ remove: function ( key ) {
+
+ delete objects[ key ];
+
+ },
+
+ removeAll: function () {
+
+ objects = {};
+
+ }
+
+ };
+
+}
+
+/*********************************/
+/********** EXTENSIONS ***********/
+/*********************************/
+
+const EXTENSIONS = {
+ KHR_BINARY_GLTF: 'KHR_binary_glTF',
+ KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression',
+ KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual',
+ KHR_MATERIALS_CLEARCOAT: 'KHR_materials_clearcoat',
+ KHR_MATERIALS_DISPERSION: 'KHR_materials_dispersion',
+ KHR_MATERIALS_IOR: 'KHR_materials_ior',
+ KHR_MATERIALS_SHEEN: 'KHR_materials_sheen',
+ KHR_MATERIALS_SPECULAR: 'KHR_materials_specular',
+ KHR_MATERIALS_TRANSMISSION: 'KHR_materials_transmission',
+ KHR_MATERIALS_IRIDESCENCE: 'KHR_materials_iridescence',
+ KHR_MATERIALS_ANISOTROPY: 'KHR_materials_anisotropy',
+ KHR_MATERIALS_UNLIT: 'KHR_materials_unlit',
+ KHR_MATERIALS_VOLUME: 'KHR_materials_volume',
+ KHR_TEXTURE_BASISU: 'KHR_texture_basisu',
+ KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform',
+ KHR_MESH_QUANTIZATION: 'KHR_mesh_quantization',
+ KHR_MATERIALS_EMISSIVE_STRENGTH: 'KHR_materials_emissive_strength',
+ EXT_MATERIALS_BUMP: 'EXT_materials_bump',
+ EXT_TEXTURE_WEBP: 'EXT_texture_webp',
+ EXT_TEXTURE_AVIF: 'EXT_texture_avif',
+ EXT_MESHOPT_COMPRESSION: 'EXT_meshopt_compression',
+ EXT_MESH_GPU_INSTANCING: 'EXT_mesh_gpu_instancing'
+};
+
+/**
+ * Punctual Lights Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual
+ */
+class GLTFLightsExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;
+
+ // Object3D instance caches
+ this.cache = { refs: {}, uses: {} };
+
+ }
+
+ _markDefs() {
+
+ const parser = this.parser;
+ const nodeDefs = this.parser.json.nodes || [];
+
+ for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
+
+ const nodeDef = nodeDefs[ nodeIndex ];
+
+ if ( nodeDef.extensions
+ && nodeDef.extensions[ this.name ]
+ && nodeDef.extensions[ this.name ].light !== undefined ) {
+
+ parser._addNodeRef( this.cache, nodeDef.extensions[ this.name ].light );
+
+ }
+
+ }
+
+ }
+
+ _loadLight( lightIndex ) {
+
+ const parser = this.parser;
+ const cacheKey = 'light:' + lightIndex;
+ let dependency = parser.cache.get( cacheKey );
+
+ if ( dependency ) return dependency;
+
+ const json = parser.json;
+ const extensions = ( json.extensions && json.extensions[ this.name ] ) || {};
+ const lightDefs = extensions.lights || [];
+ const lightDef = lightDefs[ lightIndex ];
+ let lightNode;
+
+ const color = new Color( 0xffffff );
+
+ if ( lightDef.color !== undefined ) color.setRGB( lightDef.color[ 0 ], lightDef.color[ 1 ], lightDef.color[ 2 ], LinearSRGBColorSpace );
+
+ const range = lightDef.range !== undefined ? lightDef.range : 0;
+
+ switch ( lightDef.type ) {
+
+ case 'directional':
+ lightNode = new DirectionalLight( color );
+ lightNode.target.position.set( 0, 0, - 1 );
+ lightNode.add( lightNode.target );
+ break;
+
+ case 'point':
+ lightNode = new PointLight( color );
+ lightNode.distance = range;
+ break;
+
+ case 'spot':
+ lightNode = new SpotLight( color );
+ lightNode.distance = range;
+ // Handle spotlight properties.
+ lightDef.spot = lightDef.spot || {};
+ lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0;
+ lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0;
+ lightNode.angle = lightDef.spot.outerConeAngle;
+ lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
+ lightNode.target.position.set( 0, 0, - 1 );
+ lightNode.add( lightNode.target );
+ break;
+
+ default:
+ throw new Error( 'THREE.GLTFLoader: Unexpected light type: ' + lightDef.type );
+
+ }
+
+ // Some lights (e.g. spot) default to a position other than the origin. Reset the position
+ // here, because node-level parsing will only override position if explicitly specified.
+ lightNode.position.set( 0, 0, 0 );
+
+ lightNode.decay = 2;
+
+ assignExtrasToUserData( lightNode, lightDef );
+
+ if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity;
+
+ lightNode.name = parser.createUniqueName( lightDef.name || ( 'light_' + lightIndex ) );
+
+ dependency = Promise.resolve( lightNode );
+
+ parser.cache.add( cacheKey, dependency );
+
+ return dependency;
+
+ }
+
+ getDependency( type, index ) {
+
+ if ( type !== 'light' ) return;
+
+ return this._loadLight( index );
+
+ }
+
+ createNodeAttachment( nodeIndex ) {
+
+ const self = this;
+ const parser = this.parser;
+ const json = parser.json;
+ const nodeDef = json.nodes[ nodeIndex ];
+ const lightDef = ( nodeDef.extensions && nodeDef.extensions[ this.name ] ) || {};
+ const lightIndex = lightDef.light;
+
+ if ( lightIndex === undefined ) return null;
+
+ return this._loadLight( lightIndex ).then( function ( light ) {
+
+ return parser._getNodeRef( self.cache, lightIndex, light );
+
+ } );
+
+ }
+
+}
+
+/**
+ * Unlit Materials Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_unlit
+ */
+class GLTFMaterialsUnlitExtension {
+
+ constructor() {
+
+ this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;
+
+ }
+
+ getMaterialType() {
+
+ return MeshBasicMaterial;
+
+ }
+
+ extendParams( materialParams, materialDef, parser ) {
+
+ const pending = [];
+
+ materialParams.color = new Color( 1.0, 1.0, 1.0 );
+ materialParams.opacity = 1.0;
+
+ const metallicRoughness = materialDef.pbrMetallicRoughness;
+
+ if ( metallicRoughness ) {
+
+ if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
+
+ const array = metallicRoughness.baseColorFactor;
+
+ materialParams.color.setRGB( array[ 0 ], array[ 1 ], array[ 2 ], LinearSRGBColorSpace );
+ materialParams.opacity = array[ 3 ];
+
+ }
+
+ if ( metallicRoughness.baseColorTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, SRGBColorSpace ) );
+
+ }
+
+ }
+
+ return Promise.all( pending );
+
+ }
+
+}
+
+/**
+ * Materials Emissive Strength Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/blob/5768b3ce0ef32bc39cdf1bef10b948586635ead3/extensions/2.0/Khronos/KHR_materials_emissive_strength/README.md
+ */
+class GLTFMaterialsEmissiveStrengthExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.KHR_MATERIALS_EMISSIVE_STRENGTH;
+
+ }
+
+ extendMaterialParams( materialIndex, materialParams ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
+
+ return Promise.resolve();
+
+ }
+
+ const emissiveStrength = materialDef.extensions[ this.name ].emissiveStrength;
+
+ if ( emissiveStrength !== undefined ) {
+
+ materialParams.emissiveIntensity = emissiveStrength;
+
+ }
+
+ return Promise.resolve();
+
+ }
+
+}
+
+/**
+ * Clearcoat Materials Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_clearcoat
+ */
+class GLTFMaterialsClearcoatExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT;
+
+ }
+
+ getMaterialType( materialIndex ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
+
+ return MeshPhysicalMaterial;
+
+ }
+
+ extendMaterialParams( materialIndex, materialParams ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
+
+ return Promise.resolve();
+
+ }
+
+ const pending = [];
+
+ const extension = materialDef.extensions[ this.name ];
+
+ if ( extension.clearcoatFactor !== undefined ) {
+
+ materialParams.clearcoat = extension.clearcoatFactor;
+
+ }
+
+ if ( extension.clearcoatTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'clearcoatMap', extension.clearcoatTexture ) );
+
+ }
+
+ if ( extension.clearcoatRoughnessFactor !== undefined ) {
+
+ materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor;
+
+ }
+
+ if ( extension.clearcoatRoughnessTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'clearcoatRoughnessMap', extension.clearcoatRoughnessTexture ) );
+
+ }
+
+ if ( extension.clearcoatNormalTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'clearcoatNormalMap', extension.clearcoatNormalTexture ) );
+
+ if ( extension.clearcoatNormalTexture.scale !== undefined ) {
+
+ const scale = extension.clearcoatNormalTexture.scale;
+
+ materialParams.clearcoatNormalScale = new Vector2( scale, scale );
+
+ }
+
+ }
+
+ return Promise.all( pending );
+
+ }
+
+}
+
+/**
+ * Materials dispersion Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_dispersion
+ */
+class GLTFMaterialsDispersionExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.KHR_MATERIALS_DISPERSION;
+
+ }
+
+ getMaterialType( materialIndex ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
+
+ return MeshPhysicalMaterial;
+
+ }
+
+ extendMaterialParams( materialIndex, materialParams ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
+
+ return Promise.resolve();
+
+ }
+
+ const extension = materialDef.extensions[ this.name ];
+
+ materialParams.dispersion = extension.dispersion !== undefined ? extension.dispersion : 0;
+
+ return Promise.resolve();
+
+ }
+
+}
+
+/**
+ * Iridescence Materials Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_iridescence
+ */
+class GLTFMaterialsIridescenceExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.KHR_MATERIALS_IRIDESCENCE;
+
+ }
+
+ getMaterialType( materialIndex ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
+
+ return MeshPhysicalMaterial;
+
+ }
+
+ extendMaterialParams( materialIndex, materialParams ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
+
+ return Promise.resolve();
+
+ }
+
+ const pending = [];
+
+ const extension = materialDef.extensions[ this.name ];
+
+ if ( extension.iridescenceFactor !== undefined ) {
+
+ materialParams.iridescence = extension.iridescenceFactor;
+
+ }
+
+ if ( extension.iridescenceTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'iridescenceMap', extension.iridescenceTexture ) );
+
+ }
+
+ if ( extension.iridescenceIor !== undefined ) {
+
+ materialParams.iridescenceIOR = extension.iridescenceIor;
+
+ }
+
+ if ( materialParams.iridescenceThicknessRange === undefined ) {
+
+ materialParams.iridescenceThicknessRange = [ 100, 400 ];
+
+ }
+
+ if ( extension.iridescenceThicknessMinimum !== undefined ) {
+
+ materialParams.iridescenceThicknessRange[ 0 ] = extension.iridescenceThicknessMinimum;
+
+ }
+
+ if ( extension.iridescenceThicknessMaximum !== undefined ) {
+
+ materialParams.iridescenceThicknessRange[ 1 ] = extension.iridescenceThicknessMaximum;
+
+ }
+
+ if ( extension.iridescenceThicknessTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'iridescenceThicknessMap', extension.iridescenceThicknessTexture ) );
+
+ }
+
+ return Promise.all( pending );
+
+ }
+
+}
+
+/**
+ * Sheen Materials Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_sheen
+ */
+class GLTFMaterialsSheenExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.KHR_MATERIALS_SHEEN;
+
+ }
+
+ getMaterialType( materialIndex ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
+
+ return MeshPhysicalMaterial;
+
+ }
+
+ extendMaterialParams( materialIndex, materialParams ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
+
+ return Promise.resolve();
+
+ }
+
+ const pending = [];
+
+ materialParams.sheenColor = new Color( 0, 0, 0 );
+ materialParams.sheenRoughness = 0;
+ materialParams.sheen = 1;
+
+ const extension = materialDef.extensions[ this.name ];
+
+ if ( extension.sheenColorFactor !== undefined ) {
+
+ const colorFactor = extension.sheenColorFactor;
+ materialParams.sheenColor.setRGB( colorFactor[ 0 ], colorFactor[ 1 ], colorFactor[ 2 ], LinearSRGBColorSpace );
+
+ }
+
+ if ( extension.sheenRoughnessFactor !== undefined ) {
+
+ materialParams.sheenRoughness = extension.sheenRoughnessFactor;
+
+ }
+
+ if ( extension.sheenColorTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'sheenColorMap', extension.sheenColorTexture, SRGBColorSpace ) );
+
+ }
+
+ if ( extension.sheenRoughnessTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'sheenRoughnessMap', extension.sheenRoughnessTexture ) );
+
+ }
+
+ return Promise.all( pending );
+
+ }
+
+}
+
+/**
+ * Transmission Materials Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_transmission
+ * Draft: https://github.com/KhronosGroup/glTF/pull/1698
+ */
+class GLTFMaterialsTransmissionExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.KHR_MATERIALS_TRANSMISSION;
+
+ }
+
+ getMaterialType( materialIndex ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
+
+ return MeshPhysicalMaterial;
+
+ }
+
+ extendMaterialParams( materialIndex, materialParams ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
+
+ return Promise.resolve();
+
+ }
+
+ const pending = [];
+
+ const extension = materialDef.extensions[ this.name ];
+
+ if ( extension.transmissionFactor !== undefined ) {
+
+ materialParams.transmission = extension.transmissionFactor;
+
+ }
+
+ if ( extension.transmissionTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'transmissionMap', extension.transmissionTexture ) );
+
+ }
+
+ return Promise.all( pending );
+
+ }
+
+}
+
+/**
+ * Materials Volume Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_volume
+ */
+class GLTFMaterialsVolumeExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.KHR_MATERIALS_VOLUME;
+
+ }
+
+ getMaterialType( materialIndex ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
+
+ return MeshPhysicalMaterial;
+
+ }
+
+ extendMaterialParams( materialIndex, materialParams ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
+
+ return Promise.resolve();
+
+ }
+
+ const pending = [];
+
+ const extension = materialDef.extensions[ this.name ];
+
+ materialParams.thickness = extension.thicknessFactor !== undefined ? extension.thicknessFactor : 0;
+
+ if ( extension.thicknessTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'thicknessMap', extension.thicknessTexture ) );
+
+ }
+
+ materialParams.attenuationDistance = extension.attenuationDistance || Infinity;
+
+ const colorArray = extension.attenuationColor || [ 1, 1, 1 ];
+ materialParams.attenuationColor = new Color().setRGB( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ], LinearSRGBColorSpace );
+
+ return Promise.all( pending );
+
+ }
+
+}
+
+/**
+ * Materials ior Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_ior
+ */
+class GLTFMaterialsIorExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.KHR_MATERIALS_IOR;
+
+ }
+
+ getMaterialType( materialIndex ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
+
+ return MeshPhysicalMaterial;
+
+ }
+
+ extendMaterialParams( materialIndex, materialParams ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
+
+ return Promise.resolve();
+
+ }
+
+ const extension = materialDef.extensions[ this.name ];
+
+ materialParams.ior = extension.ior !== undefined ? extension.ior : 1.5;
+
+ return Promise.resolve();
+
+ }
+
+}
+
+/**
+ * Materials specular Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_specular
+ */
+class GLTFMaterialsSpecularExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.KHR_MATERIALS_SPECULAR;
+
+ }
+
+ getMaterialType( materialIndex ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
+
+ return MeshPhysicalMaterial;
+
+ }
+
+ extendMaterialParams( materialIndex, materialParams ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
+
+ return Promise.resolve();
+
+ }
+
+ const pending = [];
+
+ const extension = materialDef.extensions[ this.name ];
+
+ materialParams.specularIntensity = extension.specularFactor !== undefined ? extension.specularFactor : 1.0;
+
+ if ( extension.specularTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'specularIntensityMap', extension.specularTexture ) );
+
+ }
+
+ const colorArray = extension.specularColorFactor || [ 1, 1, 1 ];
+ materialParams.specularColor = new Color().setRGB( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ], LinearSRGBColorSpace );
+
+ if ( extension.specularColorTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'specularColorMap', extension.specularColorTexture, SRGBColorSpace ) );
+
+ }
+
+ return Promise.all( pending );
+
+ }
+
+}
+
+
+/**
+ * Materials bump Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/EXT_materials_bump
+ */
+class GLTFMaterialsBumpExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.EXT_MATERIALS_BUMP;
+
+ }
+
+ getMaterialType( materialIndex ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
+
+ return MeshPhysicalMaterial;
+
+ }
+
+ extendMaterialParams( materialIndex, materialParams ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
+
+ return Promise.resolve();
+
+ }
+
+ const pending = [];
+
+ const extension = materialDef.extensions[ this.name ];
+
+ materialParams.bumpScale = extension.bumpFactor !== undefined ? extension.bumpFactor : 1.0;
+
+ if ( extension.bumpTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'bumpMap', extension.bumpTexture ) );
+
+ }
+
+ return Promise.all( pending );
+
+ }
+
+}
+
+/**
+ * Materials anisotropy Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_anisotropy
+ */
+class GLTFMaterialsAnisotropyExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.KHR_MATERIALS_ANISOTROPY;
+
+ }
+
+ getMaterialType( materialIndex ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
+
+ return MeshPhysicalMaterial;
+
+ }
+
+ extendMaterialParams( materialIndex, materialParams ) {
+
+ const parser = this.parser;
+ const materialDef = parser.json.materials[ materialIndex ];
+
+ if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
+
+ return Promise.resolve();
+
+ }
+
+ const pending = [];
+
+ const extension = materialDef.extensions[ this.name ];
+
+ if ( extension.anisotropyStrength !== undefined ) {
+
+ materialParams.anisotropy = extension.anisotropyStrength;
+
+ }
+
+ if ( extension.anisotropyRotation !== undefined ) {
+
+ materialParams.anisotropyRotation = extension.anisotropyRotation;
+
+ }
+
+ if ( extension.anisotropyTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'anisotropyMap', extension.anisotropyTexture ) );
+
+ }
+
+ return Promise.all( pending );
+
+ }
+
+}
+
+/**
+ * BasisU Texture Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_basisu
+ */
+class GLTFTextureBasisUExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.KHR_TEXTURE_BASISU;
+
+ }
+
+ loadTexture( textureIndex ) {
+
+ const parser = this.parser;
+ const json = parser.json;
+
+ const textureDef = json.textures[ textureIndex ];
+
+ if ( ! textureDef.extensions || ! textureDef.extensions[ this.name ] ) {
+
+ return null;
+
+ }
+
+ const extension = textureDef.extensions[ this.name ];
+ const loader = parser.options.ktx2Loader;
+
+ if ( ! loader ) {
+
+ if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {
+
+ throw new Error( 'THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures' );
+
+ } else {
+
+ // Assumes that the extension is optional and that a fallback texture is present
+ return null;
+
+ }
+
+ }
+
+ return parser.loadTextureImage( textureIndex, extension.source, loader );
+
+ }
+
+}
+
+/**
+ * WebP Texture Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_texture_webp
+ */
+class GLTFTextureWebPExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.EXT_TEXTURE_WEBP;
+ this.isSupported = null;
+
+ }
+
+ loadTexture( textureIndex ) {
+
+ const name = this.name;
+ const parser = this.parser;
+ const json = parser.json;
+
+ const textureDef = json.textures[ textureIndex ];
+
+ if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) {
+
+ return null;
+
+ }
+
+ const extension = textureDef.extensions[ name ];
+ const source = json.images[ extension.source ];
+
+ let loader = parser.textureLoader;
+ if ( source.uri ) {
+
+ const handler = parser.options.manager.getHandler( source.uri );
+ if ( handler !== null ) loader = handler;
+
+ }
+
+ return this.detectSupport().then( function ( isSupported ) {
+
+ if ( isSupported ) return parser.loadTextureImage( textureIndex, extension.source, loader );
+
+ if ( json.extensionsRequired && json.extensionsRequired.indexOf( name ) >= 0 ) {
+
+ throw new Error( 'THREE.GLTFLoader: WebP required by asset but unsupported.' );
+
+ }
+
+ // Fall back to PNG or JPEG.
+ return parser.loadTexture( textureIndex );
+
+ } );
+
+ }
+
+ detectSupport() {
+
+ if ( ! this.isSupported ) {
+
+ this.isSupported = new Promise( function ( resolve ) {
+
+ const image = new Image();
+
+ // Lossy test image. Support for lossy images doesn't guarantee support for all
+ // WebP images, unfortunately.
+ image.src = '';
+
+ image.onload = image.onerror = function () {
+
+ resolve( image.height === 1 );
+
+ };
+
+ } );
+
+ }
+
+ return this.isSupported;
+
+ }
+
+}
+
+/**
+ * AVIF Texture Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_texture_avif
+ */
+class GLTFTextureAVIFExtension {
+
+ constructor( parser ) {
+
+ this.parser = parser;
+ this.name = EXTENSIONS.EXT_TEXTURE_AVIF;
+ this.isSupported = null;
+
+ }
+
+ loadTexture( textureIndex ) {
+
+ const name = this.name;
+ const parser = this.parser;
+ const json = parser.json;
+
+ const textureDef = json.textures[ textureIndex ];
+
+ if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) {
+
+ return null;
+
+ }
+
+ const extension = textureDef.extensions[ name ];
+ const source = json.images[ extension.source ];
+
+ let loader = parser.textureLoader;
+ if ( source.uri ) {
+
+ const handler = parser.options.manager.getHandler( source.uri );
+ if ( handler !== null ) loader = handler;
+
+ }
+
+ return this.detectSupport().then( function ( isSupported ) {
+
+ if ( isSupported ) return parser.loadTextureImage( textureIndex, extension.source, loader );
+
+ if ( json.extensionsRequired && json.extensionsRequired.indexOf( name ) >= 0 ) {
+
+ throw new Error( 'THREE.GLTFLoader: AVIF required by asset but unsupported.' );
+
+ }
+
+ // Fall back to PNG or JPEG.
+ return parser.loadTexture( textureIndex );
+
+ } );
+
+ }
+
+ detectSupport() {
+
+ if ( ! this.isSupported ) {
+
+ this.isSupported = new Promise( function ( resolve ) {
+
+ const image = new Image();
+
+ // Lossy test image.
+ image.src = '';
+ image.onload = image.onerror = function () {
+
+ resolve( image.height === 1 );
+
+ };
+
+ } );
+
+ }
+
+ return this.isSupported;
+
+ }
+
+}
+
+/**
+ * meshopt BufferView Compression Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_meshopt_compression
+ */
+class GLTFMeshoptCompression {
+
+ constructor( parser ) {
+
+ this.name = EXTENSIONS.EXT_MESHOPT_COMPRESSION;
+ this.parser = parser;
+
+ }
+
+ loadBufferView( index ) {
+
+ const json = this.parser.json;
+ const bufferView = json.bufferViews[ index ];
+
+ if ( bufferView.extensions && bufferView.extensions[ this.name ] ) {
+
+ const extensionDef = bufferView.extensions[ this.name ];
+
+ const buffer = this.parser.getDependency( 'buffer', extensionDef.buffer );
+ const decoder = this.parser.options.meshoptDecoder;
+
+ if ( ! decoder || ! decoder.supported ) {
+
+ if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {
+
+ throw new Error( 'THREE.GLTFLoader: setMeshoptDecoder must be called before loading compressed files' );
+
+ } else {
+
+ // Assumes that the extension is optional and that fallback buffer data is present
+ return null;
+
+ }
+
+ }
+
+ return buffer.then( function ( res ) {
+
+ const byteOffset = extensionDef.byteOffset || 0;
+ const byteLength = extensionDef.byteLength || 0;
+
+ const count = extensionDef.count;
+ const stride = extensionDef.byteStride;
+
+ const source = new Uint8Array( res, byteOffset, byteLength );
+
+ if ( decoder.decodeGltfBufferAsync ) {
+
+ return decoder.decodeGltfBufferAsync( count, stride, source, extensionDef.mode, extensionDef.filter ).then( function ( res ) {
+
+ return res.buffer;
+
+ } );
+
+ } else {
+
+ // Support for MeshoptDecoder 0.18 or earlier, without decodeGltfBufferAsync
+ return decoder.ready.then( function () {
+
+ const result = new ArrayBuffer( count * stride );
+ decoder.decodeGltfBuffer( new Uint8Array( result ), count, stride, source, extensionDef.mode, extensionDef.filter );
+ return result;
+
+ } );
+
+ }
+
+ } );
+
+ } else {
+
+ return null;
+
+ }
+
+ }
+
+}
+
+/**
+ * GPU Instancing Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_mesh_gpu_instancing
+ *
+ */
+class GLTFMeshGpuInstancing {
+
+ constructor( parser ) {
+
+ this.name = EXTENSIONS.EXT_MESH_GPU_INSTANCING;
+ this.parser = parser;
+
+ }
+
+ createNodeMesh( nodeIndex ) {
+
+ const json = this.parser.json;
+ const nodeDef = json.nodes[ nodeIndex ];
+
+ if ( ! nodeDef.extensions || ! nodeDef.extensions[ this.name ] ||
+ nodeDef.mesh === undefined ) {
+
+ return null;
+
+ }
+
+ const meshDef = json.meshes[ nodeDef.mesh ];
+
+ // No Points or Lines + Instancing support yet
+
+ for ( const primitive of meshDef.primitives ) {
+
+ if ( primitive.mode !== WEBGL_CONSTANTS.TRIANGLES &&
+ primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_STRIP &&
+ primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_FAN &&
+ primitive.mode !== undefined ) {
+
+ return null;
+
+ }
+
+ }
+
+ const extensionDef = nodeDef.extensions[ this.name ];
+ const attributesDef = extensionDef.attributes;
+
+ // @TODO: Can we support InstancedMesh + SkinnedMesh?
+
+ const pending = [];
+ const attributes = {};
+
+ for ( const key in attributesDef ) {
+
+ pending.push( this.parser.getDependency( 'accessor', attributesDef[ key ] ).then( accessor => {
+
+ attributes[ key ] = accessor;
+ return attributes[ key ];
+
+ } ) );
+
+ }
+
+ if ( pending.length < 1 ) {
+
+ return null;
+
+ }
+
+ pending.push( this.parser.createNodeMesh( nodeIndex ) );
+
+ return Promise.all( pending ).then( results => {
+
+ const nodeObject = results.pop();
+ const meshes = nodeObject.isGroup ? nodeObject.children : [ nodeObject ];
+ const count = results[ 0 ].count; // All attribute counts should be same
+ const instancedMeshes = [];
+
+ for ( const mesh of meshes ) {
+
+ // Temporal variables
+ const m = new Matrix4();
+ const p = new Vector3();
+ const q = new Quaternion();
+ const s = new Vector3( 1, 1, 1 );
+
+ const instancedMesh = new InstancedMesh( mesh.geometry, mesh.material, count );
+
+ for ( let i = 0; i < count; i ++ ) {
+
+ if ( attributes.TRANSLATION ) {
+
+ p.fromBufferAttribute( attributes.TRANSLATION, i );
+
+ }
+
+ if ( attributes.ROTATION ) {
+
+ q.fromBufferAttribute( attributes.ROTATION, i );
+
+ }
+
+ if ( attributes.SCALE ) {
+
+ s.fromBufferAttribute( attributes.SCALE, i );
+
+ }
+
+ instancedMesh.setMatrixAt( i, m.compose( p, q, s ) );
+
+ }
+
+ // Add instance attributes to the geometry, excluding TRS.
+ for ( const attributeName in attributes ) {
+
+ if ( attributeName === '_COLOR_0' ) {
+
+ const attr = attributes[ attributeName ];
+ instancedMesh.instanceColor = new InstancedBufferAttribute( attr.array, attr.itemSize, attr.normalized );
+
+ } else if ( attributeName !== 'TRANSLATION' &&
+ attributeName !== 'ROTATION' &&
+ attributeName !== 'SCALE' ) {
+
+ mesh.geometry.setAttribute( attributeName, attributes[ attributeName ] );
+
+ }
+
+ }
+
+ // Just in case
+ Object3D.prototype.copy.call( instancedMesh, mesh );
+
+ this.parser.assignFinalMaterial( instancedMesh );
+
+ instancedMeshes.push( instancedMesh );
+
+ }
+
+ if ( nodeObject.isGroup ) {
+
+ nodeObject.clear();
+
+ nodeObject.add( ... instancedMeshes );
+
+ return nodeObject;
+
+ }
+
+ return instancedMeshes[ 0 ];
+
+ } );
+
+ }
+
+}
+
+/* BINARY EXTENSION */
+const BINARY_EXTENSION_HEADER_MAGIC = 'glTF';
+const BINARY_EXTENSION_HEADER_LENGTH = 12;
+const BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 };
+
+class GLTFBinaryExtension {
+
+ constructor( data ) {
+
+ this.name = EXTENSIONS.KHR_BINARY_GLTF;
+ this.content = null;
+ this.body = null;
+
+ const headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH );
+ const textDecoder = new TextDecoder();
+
+ this.header = {
+ magic: textDecoder.decode( new Uint8Array( data.slice( 0, 4 ) ) ),
+ version: headerView.getUint32( 4, true ),
+ length: headerView.getUint32( 8, true )
+ };
+
+ if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) {
+
+ throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' );
+
+ } else if ( this.header.version < 2.0 ) {
+
+ throw new Error( 'THREE.GLTFLoader: Legacy binary file detected.' );
+
+ }
+
+ const chunkContentsLength = this.header.length - BINARY_EXTENSION_HEADER_LENGTH;
+ const chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH );
+ let chunkIndex = 0;
+
+ while ( chunkIndex < chunkContentsLength ) {
+
+ const chunkLength = chunkView.getUint32( chunkIndex, true );
+ chunkIndex += 4;
+
+ const chunkType = chunkView.getUint32( chunkIndex, true );
+ chunkIndex += 4;
+
+ if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) {
+
+ const contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength );
+ this.content = textDecoder.decode( contentArray );
+
+ } else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) {
+
+ const byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex;
+ this.body = data.slice( byteOffset, byteOffset + chunkLength );
+
+ }
+
+ // Clients must ignore chunks with unknown types.
+
+ chunkIndex += chunkLength;
+
+ }
+
+ if ( this.content === null ) {
+
+ throw new Error( 'THREE.GLTFLoader: JSON content not found.' );
+
+ }
+
+ }
+
+}
+
+/**
+ * DRACO Mesh Compression Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression
+ */
+class GLTFDracoMeshCompressionExtension {
+
+ constructor( json, dracoLoader ) {
+
+ if ( ! dracoLoader ) {
+
+ throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' );
+
+ }
+
+ this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
+ this.json = json;
+ this.dracoLoader = dracoLoader;
+ this.dracoLoader.preload();
+
+ }
+
+ decodePrimitive( primitive, parser ) {
+
+ const json = this.json;
+ const dracoLoader = this.dracoLoader;
+ const bufferViewIndex = primitive.extensions[ this.name ].bufferView;
+ const gltfAttributeMap = primitive.extensions[ this.name ].attributes;
+ const threeAttributeMap = {};
+ const attributeNormalizedMap = {};
+ const attributeTypeMap = {};
+
+ for ( const attributeName in gltfAttributeMap ) {
+
+ const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
+
+ threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ];
+
+ }
+
+ for ( const attributeName in primitive.attributes ) {
+
+ const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
+
+ if ( gltfAttributeMap[ attributeName ] !== undefined ) {
+
+ const accessorDef = json.accessors[ primitive.attributes[ attributeName ] ];
+ const componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
+
+ attributeTypeMap[ threeAttributeName ] = componentType.name;
+ attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true;
+
+ }
+
+ }
+
+ return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) {
+
+ return new Promise( function ( resolve, reject ) {
+
+ dracoLoader.decodeDracoFile( bufferView, function ( geometry ) {
+
+ for ( const attributeName in geometry.attributes ) {
+
+ const attribute = geometry.attributes[ attributeName ];
+ const normalized = attributeNormalizedMap[ attributeName ];
+
+ if ( normalized !== undefined ) attribute.normalized = normalized;
+
+ }
+
+ resolve( geometry );
+
+ }, threeAttributeMap, attributeTypeMap, LinearSRGBColorSpace, reject );
+
+ } );
+
+ } );
+
+ }
+
+}
+
+/**
+ * Texture Transform Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_transform
+ */
+class GLTFTextureTransformExtension {
+
+ constructor() {
+
+ this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;
+
+ }
+
+ extendTexture( texture, transform ) {
+
+ if ( ( transform.texCoord === undefined || transform.texCoord === texture.channel )
+ && transform.offset === undefined
+ && transform.rotation === undefined
+ && transform.scale === undefined ) {
+
+ // See https://github.com/mrdoob/three.js/issues/21819.
+ return texture;
+
+ }
+
+ texture = texture.clone();
+
+ if ( transform.texCoord !== undefined ) {
+
+ texture.channel = transform.texCoord;
+
+ }
+
+ if ( transform.offset !== undefined ) {
+
+ texture.offset.fromArray( transform.offset );
+
+ }
+
+ if ( transform.rotation !== undefined ) {
+
+ texture.rotation = transform.rotation;
+
+ }
+
+ if ( transform.scale !== undefined ) {
+
+ texture.repeat.fromArray( transform.scale );
+
+ }
+
+ texture.needsUpdate = true;
+
+ return texture;
+
+ }
+
+}
+
+/**
+ * Mesh Quantization Extension
+ *
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization
+ */
+class GLTFMeshQuantizationExtension {
+
+ constructor() {
+
+ this.name = EXTENSIONS.KHR_MESH_QUANTIZATION;
+
+ }
+
+}
+
+/*********************************/
+/********** INTERPOLATION ********/
+/*********************************/
+
+// Spline Interpolation
+// Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation
+class GLTFCubicSplineInterpolant extends Interpolant {
+
+ constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
+
+ super( parameterPositions, sampleValues, sampleSize, resultBuffer );
+
+ }
+
+ copySampleValue_( index ) {
+
+ // Copies a sample value to the result buffer. See description of glTF
+ // CUBICSPLINE values layout in interpolate_() function below.
+
+ const result = this.resultBuffer,
+ values = this.sampleValues,
+ valueSize = this.valueSize,
+ offset = index * valueSize * 3 + valueSize;
+
+ for ( let i = 0; i !== valueSize; i ++ ) {
+
+ result[ i ] = values[ offset + i ];
+
+ }
+
+ return result;
+
+ }
+
+ interpolate_( i1, t0, t, t1 ) {
+
+ const result = this.resultBuffer;
+ const values = this.sampleValues;
+ const stride = this.valueSize;
+
+ const stride2 = stride * 2;
+ const stride3 = stride * 3;
+
+ const td = t1 - t0;
+
+ const p = ( t - t0 ) / td;
+ const pp = p * p;
+ const ppp = pp * p;
+
+ const offset1 = i1 * stride3;
+ const offset0 = offset1 - stride3;
+
+ const s2 = - 2 * ppp + 3 * pp;
+ const s3 = ppp - pp;
+ const s0 = 1 - s2;
+ const s1 = s3 - pp + p;
+
+ // Layout of keyframe output values for CUBICSPLINE animations:
+ // [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
+ for ( let i = 0; i !== stride; i ++ ) {
+
+ const p0 = values[ offset0 + i + stride ]; // splineVertex_k
+ const m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k)
+ const p1 = values[ offset1 + i + stride ]; // splineVertex_k+1
+ const m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k)
+
+ result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;
+
+ }
+
+ return result;
+
+ }
+
+}
+
+const _q = new Quaternion();
+
+class GLTFCubicSplineQuaternionInterpolant extends GLTFCubicSplineInterpolant {
+
+ interpolate_( i1, t0, t, t1 ) {
+
+ const result = super.interpolate_( i1, t0, t, t1 );
+
+ _q.fromArray( result ).normalize().toArray( result );
+
+ return result;
+
+ }
+
+}
+
+
+/*********************************/
+/********** INTERNALS ************/
+/*********************************/
+
+/* CONSTANTS */
+
+const WEBGL_CONSTANTS = {
+ FLOAT: 5126,
+ //FLOAT_MAT2: 35674,
+ FLOAT_MAT3: 35675,
+ FLOAT_MAT4: 35676,
+ FLOAT_VEC2: 35664,
+ FLOAT_VEC3: 35665,
+ FLOAT_VEC4: 35666,
+ LINEAR: 9729,
+ REPEAT: 10497,
+ SAMPLER_2D: 35678,
+ POINTS: 0,
+ LINES: 1,
+ LINE_LOOP: 2,
+ LINE_STRIP: 3,
+ TRIANGLES: 4,
+ TRIANGLE_STRIP: 5,
+ TRIANGLE_FAN: 6,
+ UNSIGNED_BYTE: 5121,
+ UNSIGNED_SHORT: 5123
+};
+
+const WEBGL_COMPONENT_TYPES = {
+ 5120: Int8Array,
+ 5121: Uint8Array,
+ 5122: Int16Array,
+ 5123: Uint16Array,
+ 5125: Uint32Array,
+ 5126: Float32Array
+};
+
+const WEBGL_FILTERS = {
+ 9728: NearestFilter,
+ 9729: LinearFilter,
+ 9984: NearestMipmapNearestFilter,
+ 9985: LinearMipmapNearestFilter,
+ 9986: NearestMipmapLinearFilter,
+ 9987: LinearMipmapLinearFilter
+};
+
+const WEBGL_WRAPPINGS = {
+ 33071: ClampToEdgeWrapping,
+ 33648: MirroredRepeatWrapping,
+ 10497: RepeatWrapping
+};
+
+const WEBGL_TYPE_SIZES = {
+ 'SCALAR': 1,
+ 'VEC2': 2,
+ 'VEC3': 3,
+ 'VEC4': 4,
+ 'MAT2': 4,
+ 'MAT3': 9,
+ 'MAT4': 16
+};
+
+const ATTRIBUTES = {
+ POSITION: 'position',
+ NORMAL: 'normal',
+ TANGENT: 'tangent',
+ TEXCOORD_0: 'uv',
+ TEXCOORD_1: 'uv1',
+ TEXCOORD_2: 'uv2',
+ TEXCOORD_3: 'uv3',
+ COLOR_0: 'color',
+ WEIGHTS_0: 'skinWeight',
+ JOINTS_0: 'skinIndex',
+};
+
+const PATH_PROPERTIES = {
+ scale: 'scale',
+ translation: 'position',
+ rotation: 'quaternion',
+ weights: 'morphTargetInfluences'
+};
+
+const INTERPOLATION = {
+ CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each
+ // keyframe track will be initialized with a default interpolation type, then modified.
+ LINEAR: InterpolateLinear,
+ STEP: InterpolateDiscrete
+};
+
+const ALPHA_MODES = {
+ OPAQUE: 'OPAQUE',
+ MASK: 'MASK',
+ BLEND: 'BLEND'
+};
+
+/**
+ * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
+ */
+function createDefaultMaterial( cache ) {
+
+ if ( cache[ 'DefaultMaterial' ] === undefined ) {
+
+ cache[ 'DefaultMaterial' ] = new MeshStandardMaterial( {
+ color: 0xFFFFFF,
+ emissive: 0x000000,
+ metalness: 1,
+ roughness: 1,
+ transparent: false,
+ depthTest: true,
+ side: FrontSide
+ } );
+
+ }
+
+ return cache[ 'DefaultMaterial' ];
+
+}
+
+function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) {
+
+ // Add unknown glTF extensions to an object's userData.
+
+ for ( const name in objectDef.extensions ) {
+
+ if ( knownExtensions[ name ] === undefined ) {
+
+ object.userData.gltfExtensions = object.userData.gltfExtensions || {};
+ object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ];
+
+ }
+
+ }
+
+}
+
+/**
+ * @param {Object3D|Material|BufferGeometry} object
+ * @param {GLTF.definition} gltfDef
+ */
+function assignExtrasToUserData( object, gltfDef ) {
+
+ if ( gltfDef.extras !== undefined ) {
+
+ if ( typeof gltfDef.extras === 'object' ) {
+
+ Object.assign( object.userData, gltfDef.extras );
+
+ } else {
+
+ console.warn( 'THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras );
+
+ }
+
+ }
+
+}
+
+/**
+ * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
+ *
+ * @param {BufferGeometry} geometry
+ * @param {Array} targets
+ * @param {GLTFParser} parser
+ * @return {Promise}
+ */
+function addMorphTargets( geometry, targets, parser ) {
+
+ let hasMorphPosition = false;
+ let hasMorphNormal = false;
+ let hasMorphColor = false;
+
+ for ( let i = 0, il = targets.length; i < il; i ++ ) {
+
+ const target = targets[ i ];
+
+ if ( target.POSITION !== undefined ) hasMorphPosition = true;
+ if ( target.NORMAL !== undefined ) hasMorphNormal = true;
+ if ( target.COLOR_0 !== undefined ) hasMorphColor = true;
+
+ if ( hasMorphPosition && hasMorphNormal && hasMorphColor ) break;
+
+ }
+
+ if ( ! hasMorphPosition && ! hasMorphNormal && ! hasMorphColor ) return Promise.resolve( geometry );
+
+ const pendingPositionAccessors = [];
+ const pendingNormalAccessors = [];
+ const pendingColorAccessors = [];
+
+ for ( let i = 0, il = targets.length; i < il; i ++ ) {
+
+ const target = targets[ i ];
+
+ if ( hasMorphPosition ) {
+
+ const pendingAccessor = target.POSITION !== undefined
+ ? parser.getDependency( 'accessor', target.POSITION )
+ : geometry.attributes.position;
+
+ pendingPositionAccessors.push( pendingAccessor );
+
+ }
+
+ if ( hasMorphNormal ) {
+
+ const pendingAccessor = target.NORMAL !== undefined
+ ? parser.getDependency( 'accessor', target.NORMAL )
+ : geometry.attributes.normal;
+
+ pendingNormalAccessors.push( pendingAccessor );
+
+ }
+
+ if ( hasMorphColor ) {
+
+ const pendingAccessor = target.COLOR_0 !== undefined
+ ? parser.getDependency( 'accessor', target.COLOR_0 )
+ : geometry.attributes.color;
+
+ pendingColorAccessors.push( pendingAccessor );
+
+ }
+
+ }
+
+ return Promise.all( [
+ Promise.all( pendingPositionAccessors ),
+ Promise.all( pendingNormalAccessors ),
+ Promise.all( pendingColorAccessors )
+ ] ).then( function ( accessors ) {
+
+ const morphPositions = accessors[ 0 ];
+ const morphNormals = accessors[ 1 ];
+ const morphColors = accessors[ 2 ];
+
+ if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions;
+ if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals;
+ if ( hasMorphColor ) geometry.morphAttributes.color = morphColors;
+ geometry.morphTargetsRelative = true;
+
+ return geometry;
+
+ } );
+
+}
+
+/**
+ * @param {Mesh} mesh
+ * @param {GLTF.Mesh} meshDef
+ */
+function updateMorphTargets( mesh, meshDef ) {
+
+ mesh.updateMorphTargets();
+
+ if ( meshDef.weights !== undefined ) {
+
+ for ( let i = 0, il = meshDef.weights.length; i < il; i ++ ) {
+
+ mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ];
+
+ }
+
+ }
+
+ // .extras has user-defined data, so check that .extras.targetNames is an array.
+ if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) {
+
+ const targetNames = meshDef.extras.targetNames;
+
+ if ( mesh.morphTargetInfluences.length === targetNames.length ) {
+
+ mesh.morphTargetDictionary = {};
+
+ for ( let i = 0, il = targetNames.length; i < il; i ++ ) {
+
+ mesh.morphTargetDictionary[ targetNames[ i ] ] = i;
+
+ }
+
+ } else {
+
+ console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' );
+
+ }
+
+ }
+
+}
+
+function createPrimitiveKey( primitiveDef ) {
+
+ let geometryKey;
+
+ const dracoExtension = primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ];
+
+ if ( dracoExtension ) {
+
+ geometryKey = 'draco:' + dracoExtension.bufferView
+ + ':' + dracoExtension.indices
+ + ':' + createAttributesKey( dracoExtension.attributes );
+
+ } else {
+
+ geometryKey = primitiveDef.indices + ':' + createAttributesKey( primitiveDef.attributes ) + ':' + primitiveDef.mode;
+
+ }
+
+ if ( primitiveDef.targets !== undefined ) {
+
+ for ( let i = 0, il = primitiveDef.targets.length; i < il; i ++ ) {
+
+ geometryKey += ':' + createAttributesKey( primitiveDef.targets[ i ] );
+
+ }
+
+ }
+
+ return geometryKey;
+
+}
+
+function createAttributesKey( attributes ) {
+
+ let attributesKey = '';
+
+ const keys = Object.keys( attributes ).sort();
+
+ for ( let i = 0, il = keys.length; i < il; i ++ ) {
+
+ attributesKey += keys[ i ] + ':' + attributes[ keys[ i ] ] + ';';
+
+ }
+
+ return attributesKey;
+
+}
+
+function getNormalizedComponentScale( constructor ) {
+
+ // Reference:
+ // https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization#encoding-quantized-data
+
+ switch ( constructor ) {
+
+ case Int8Array:
+ return 1 / 127;
+
+ case Uint8Array:
+ return 1 / 255;
+
+ case Int16Array:
+ return 1 / 32767;
+
+ case Uint16Array:
+ return 1 / 65535;
+
+ default:
+ throw new Error( 'THREE.GLTFLoader: Unsupported normalized accessor component type.' );
+
+ }
+
+}
+
+function getImageURIMimeType( uri ) {
+
+ if ( uri.search( /\.jpe?g($|\?)/i ) > 0 || uri.search( /^data\:image\/jpeg/ ) === 0 ) return 'image/jpeg';
+ if ( uri.search( /\.webp($|\?)/i ) > 0 || uri.search( /^data\:image\/webp/ ) === 0 ) return 'image/webp';
+
+ return 'image/png';
+
+}
+
+const _identityMatrix = new Matrix4();
+
+/* GLTF PARSER */
+
+class GLTFParser {
+
+ constructor( json = {}, options = {} ) {
+
+ this.json = json;
+ this.extensions = {};
+ this.plugins = {};
+ this.options = options;
+
+ // loader object cache
+ this.cache = new GLTFRegistry();
+
+ // associations between Three.js objects and glTF elements
+ this.associations = new Map();
+
+ // BufferGeometry caching
+ this.primitiveCache = {};
+
+ // Node cache
+ this.nodeCache = {};
+
+ // Object3D instance caches
+ this.meshCache = { refs: {}, uses: {} };
+ this.cameraCache = { refs: {}, uses: {} };
+ this.lightCache = { refs: {}, uses: {} };
+
+ this.sourceCache = {};
+ this.textureCache = {};
+
+ // Track node names, to ensure no duplicates
+ this.nodeNamesUsed = {};
+
+ // Use an ImageBitmapLoader if imageBitmaps are supported. Moves much of the
+ // expensive work of uploading a texture to the GPU off the main thread.
+
+ let isSafari = false;
+ let safariVersion = - 1;
+ let isFirefox = false;
+ let firefoxVersion = - 1;
+
+ if ( typeof navigator !== 'undefined' ) {
+
+ const userAgent = navigator.userAgent;
+
+ isSafari = /^((?!chrome|android).)*safari/i.test( userAgent ) === true;
+ const safariMatch = userAgent.match( /Version\/(\d+)/ );
+ safariVersion = isSafari && safariMatch ? parseInt( safariMatch[ 1 ], 10 ) : - 1;
+
+ isFirefox = userAgent.indexOf( 'Firefox' ) > - 1;
+ firefoxVersion = isFirefox ? userAgent.match( /Firefox\/([0-9]+)\./ )[ 1 ] : - 1;
+
+ }
+
+ if ( typeof createImageBitmap === 'undefined' || ( isSafari && safariVersion < 17 ) || ( isFirefox && firefoxVersion < 98 ) ) {
+
+ this.textureLoader = new TextureLoader( this.options.manager );
+
+ } else {
+
+ this.textureLoader = new ImageBitmapLoader( this.options.manager );
+
+ }
+
+ this.textureLoader.setCrossOrigin( this.options.crossOrigin );
+ this.textureLoader.setRequestHeader( this.options.requestHeader );
+
+ this.fileLoader = new FileLoader( this.options.manager );
+ this.fileLoader.setResponseType( 'arraybuffer' );
+
+ if ( this.options.crossOrigin === 'use-credentials' ) {
+
+ this.fileLoader.setWithCredentials( true );
+
+ }
+
+ }
+
+ setExtensions( extensions ) {
+
+ this.extensions = extensions;
+
+ }
+
+ setPlugins( plugins ) {
+
+ this.plugins = plugins;
+
+ }
+
+ parse( onLoad, onError ) {
+
+ const parser = this;
+ const json = this.json;
+ const extensions = this.extensions;
+
+ // Clear the loader cache
+ this.cache.removeAll();
+ this.nodeCache = {};
+
+ // Mark the special nodes/meshes in json for efficient parse
+ this._invokeAll( function ( ext ) {
+
+ return ext._markDefs && ext._markDefs();
+
+ } );
+
+ Promise.all( this._invokeAll( function ( ext ) {
+
+ return ext.beforeRoot && ext.beforeRoot();
+
+ } ) ).then( function () {
+
+ return Promise.all( [
+
+ parser.getDependencies( 'scene' ),
+ parser.getDependencies( 'animation' ),
+ parser.getDependencies( 'camera' ),
+
+ ] );
+
+ } ).then( function ( dependencies ) {
+
+ const result = {
+ scene: dependencies[ 0 ][ json.scene || 0 ],
+ scenes: dependencies[ 0 ],
+ animations: dependencies[ 1 ],
+ cameras: dependencies[ 2 ],
+ asset: json.asset,
+ parser: parser,
+ userData: {}
+ };
+
+ addUnknownExtensionsToUserData( extensions, result, json );
+
+ assignExtrasToUserData( result, json );
+
+ return Promise.all( parser._invokeAll( function ( ext ) {
+
+ return ext.afterRoot && ext.afterRoot( result );
+
+ } ) ).then( function () {
+
+ for ( const scene of result.scenes ) {
+
+ scene.updateMatrixWorld();
+
+ }
+
+ onLoad( result );
+
+ } );
+
+ } ).catch( onError );
+
+ }
+
+ /**
+ * Marks the special nodes/meshes in json for efficient parse.
+ */
+ _markDefs() {
+
+ const nodeDefs = this.json.nodes || [];
+ const skinDefs = this.json.skins || [];
+ const meshDefs = this.json.meshes || [];
+
+ // Nothing in the node definition indicates whether it is a Bone or an
+ // Object3D. Use the skins' joint references to mark bones.
+ for ( let skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) {
+
+ const joints = skinDefs[ skinIndex ].joints;
+
+ for ( let i = 0, il = joints.length; i < il; i ++ ) {
+
+ nodeDefs[ joints[ i ] ].isBone = true;
+
+ }
+
+ }
+
+ // Iterate over all nodes, marking references to shared resources,
+ // as well as skeleton joints.
+ for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
+
+ const nodeDef = nodeDefs[ nodeIndex ];
+
+ if ( nodeDef.mesh !== undefined ) {
+
+ this._addNodeRef( this.meshCache, nodeDef.mesh );
+
+ // Nothing in the mesh definition indicates whether it is
+ // a SkinnedMesh or Mesh. Use the node's mesh reference
+ // to mark SkinnedMesh if node has skin.
+ if ( nodeDef.skin !== undefined ) {
+
+ meshDefs[ nodeDef.mesh ].isSkinnedMesh = true;
+
+ }
+
+ }
+
+ if ( nodeDef.camera !== undefined ) {
+
+ this._addNodeRef( this.cameraCache, nodeDef.camera );
+
+ }
+
+ }
+
+ }
+
+ /**
+ * Counts references to shared node / Object3D resources. These resources
+ * can be reused, or "instantiated", at multiple nodes in the scene
+ * hierarchy. Mesh, Camera, and Light instances are instantiated and must
+ * be marked. Non-scenegraph resources (like Materials, Geometries, and
+ * Textures) can be reused directly and are not marked here.
+ *
+ * Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
+ */
+ _addNodeRef( cache, index ) {
+
+ if ( index === undefined ) return;
+
+ if ( cache.refs[ index ] === undefined ) {
+
+ cache.refs[ index ] = cache.uses[ index ] = 0;
+
+ }
+
+ cache.refs[ index ] ++;
+
+ }
+
+ /** Returns a reference to a shared resource, cloning it if necessary. */
+ _getNodeRef( cache, index, object ) {
+
+ if ( cache.refs[ index ] <= 1 ) return object;
+
+ const ref = object.clone();
+
+ // Propagates mappings to the cloned object, prevents mappings on the
+ // original object from being lost.
+ const updateMappings = ( original, clone ) => {
+
+ const mappings = this.associations.get( original );
+ if ( mappings != null ) {
+
+ this.associations.set( clone, mappings );
+
+ }
+
+ for ( const [ i, child ] of original.children.entries() ) {
+
+ updateMappings( child, clone.children[ i ] );
+
+ }
+
+ };
+
+ updateMappings( object, ref );
+
+ ref.name += '_instance_' + ( cache.uses[ index ] ++ );
+
+ return ref;
+
+ }
+
+ _invokeOne( func ) {
+
+ const extensions = Object.values( this.plugins );
+ extensions.push( this );
+
+ for ( let i = 0; i < extensions.length; i ++ ) {
+
+ const result = func( extensions[ i ] );
+
+ if ( result ) return result;
+
+ }
+
+ return null;
+
+ }
+
+ _invokeAll( func ) {
+
+ const extensions = Object.values( this.plugins );
+ extensions.unshift( this );
+
+ const pending = [];
+
+ for ( let i = 0; i < extensions.length; i ++ ) {
+
+ const result = func( extensions[ i ] );
+
+ if ( result ) pending.push( result );
+
+ }
+
+ return pending;
+
+ }
+
+ /**
+ * Requests the specified dependency asynchronously, with caching.
+ * @param {string} type
+ * @param {number} index
+ * @return {Promise}
+ */
+ getDependency( type, index ) {
+
+ const cacheKey = type + ':' + index;
+ let dependency = this.cache.get( cacheKey );
+
+ if ( ! dependency ) {
+
+ switch ( type ) {
+
+ case 'scene':
+ dependency = this.loadScene( index );
+ break;
+
+ case 'node':
+ dependency = this._invokeOne( function ( ext ) {
+
+ return ext.loadNode && ext.loadNode( index );
+
+ } );
+ break;
+
+ case 'mesh':
+ dependency = this._invokeOne( function ( ext ) {
+
+ return ext.loadMesh && ext.loadMesh( index );
+
+ } );
+ break;
+
+ case 'accessor':
+ dependency = this.loadAccessor( index );
+ break;
+
+ case 'bufferView':
+ dependency = this._invokeOne( function ( ext ) {
+
+ return ext.loadBufferView && ext.loadBufferView( index );
+
+ } );
+ break;
+
+ case 'buffer':
+ dependency = this.loadBuffer( index );
+ break;
+
+ case 'material':
+ dependency = this._invokeOne( function ( ext ) {
+
+ return ext.loadMaterial && ext.loadMaterial( index );
+
+ } );
+ break;
+
+ case 'texture':
+ dependency = this._invokeOne( function ( ext ) {
+
+ return ext.loadTexture && ext.loadTexture( index );
+
+ } );
+ break;
+
+ case 'skin':
+ dependency = this.loadSkin( index );
+ break;
+
+ case 'animation':
+ dependency = this._invokeOne( function ( ext ) {
+
+ return ext.loadAnimation && ext.loadAnimation( index );
+
+ } );
+ break;
+
+ case 'camera':
+ dependency = this.loadCamera( index );
+ break;
+
+ default:
+ dependency = this._invokeOne( function ( ext ) {
+
+ return ext != this && ext.getDependency && ext.getDependency( type, index );
+
+ } );
+
+ if ( ! dependency ) {
+
+ throw new Error( 'Unknown type: ' + type );
+
+ }
+
+ break;
+
+ }
+
+ this.cache.add( cacheKey, dependency );
+
+ }
+
+ return dependency;
+
+ }
+
+ /**
+ * Requests all dependencies of the specified type asynchronously, with caching.
+ * @param {string} type
+ * @return {Promise>}
+ */
+ getDependencies( type ) {
+
+ let dependencies = this.cache.get( type );
+
+ if ( ! dependencies ) {
+
+ const parser = this;
+ const defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || [];
+
+ dependencies = Promise.all( defs.map( function ( def, index ) {
+
+ return parser.getDependency( type, index );
+
+ } ) );
+
+ this.cache.add( type, dependencies );
+
+ }
+
+ return dependencies;
+
+ }
+
+ /**
+ * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
+ * @param {number} bufferIndex
+ * @return {Promise}
+ */
+ loadBuffer( bufferIndex ) {
+
+ const bufferDef = this.json.buffers[ bufferIndex ];
+ const loader = this.fileLoader;
+
+ if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) {
+
+ throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' );
+
+ }
+
+ // If present, GLB container is required to be the first buffer.
+ if ( bufferDef.uri === undefined && bufferIndex === 0 ) {
+
+ return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body );
+
+ }
+
+ const options = this.options;
+
+ return new Promise( function ( resolve, reject ) {
+
+ loader.load( LoaderUtils.resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () {
+
+ reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) );
+
+ } );
+
+ } );
+
+ }
+
+ /**
+ * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
+ * @param {number} bufferViewIndex
+ * @return {Promise}
+ */
+ loadBufferView( bufferViewIndex ) {
+
+ const bufferViewDef = this.json.bufferViews[ bufferViewIndex ];
+
+ return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) {
+
+ const byteLength = bufferViewDef.byteLength || 0;
+ const byteOffset = bufferViewDef.byteOffset || 0;
+ return buffer.slice( byteOffset, byteOffset + byteLength );
+
+ } );
+
+ }
+
+ /**
+ * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
+ * @param {number} accessorIndex
+ * @return {Promise}
+ */
+ loadAccessor( accessorIndex ) {
+
+ const parser = this;
+ const json = this.json;
+
+ const accessorDef = this.json.accessors[ accessorIndex ];
+
+ if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) {
+
+ const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
+ const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
+ const normalized = accessorDef.normalized === true;
+
+ const array = new TypedArray( accessorDef.count * itemSize );
+ return Promise.resolve( new BufferAttribute( array, itemSize, normalized ) );
+
+ }
+
+ const pendingBufferViews = [];
+
+ if ( accessorDef.bufferView !== undefined ) {
+
+ pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) );
+
+ } else {
+
+ pendingBufferViews.push( null );
+
+ }
+
+ if ( accessorDef.sparse !== undefined ) {
+
+ pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) );
+ pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) );
+
+ }
+
+ return Promise.all( pendingBufferViews ).then( function ( bufferViews ) {
+
+ const bufferView = bufferViews[ 0 ];
+
+ const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
+ const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
+
+ // For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
+ const elementBytes = TypedArray.BYTES_PER_ELEMENT;
+ const itemBytes = elementBytes * itemSize;
+ const byteOffset = accessorDef.byteOffset || 0;
+ const byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined;
+ const normalized = accessorDef.normalized === true;
+ let array, bufferAttribute;
+
+ // The buffer is not interleaved if the stride is the item size in bytes.
+ if ( byteStride && byteStride !== itemBytes ) {
+
+ // Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer
+ // This makes sure that IBA.count reflects accessor.count properly
+ const ibSlice = Math.floor( byteOffset / byteStride );
+ const ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count;
+ let ib = parser.cache.get( ibCacheKey );
+
+ if ( ! ib ) {
+
+ array = new TypedArray( bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes );
+
+ // Integer parameters to IB/IBA are in array elements, not bytes.
+ ib = new InterleavedBuffer( array, byteStride / elementBytes );
+
+ parser.cache.add( ibCacheKey, ib );
+
+ }
+
+ bufferAttribute = new InterleavedBufferAttribute( ib, itemSize, ( byteOffset % byteStride ) / elementBytes, normalized );
+
+ } else {
+
+ if ( bufferView === null ) {
+
+ array = new TypedArray( accessorDef.count * itemSize );
+
+ } else {
+
+ array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize );
+
+ }
+
+ bufferAttribute = new BufferAttribute( array, itemSize, normalized );
+
+ }
+
+ // https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
+ if ( accessorDef.sparse !== undefined ) {
+
+ const itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
+ const TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ];
+
+ const byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
+ const byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;
+
+ const sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices );
+ const sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize );
+
+ if ( bufferView !== null ) {
+
+ // Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
+ bufferAttribute = new BufferAttribute( bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized );
+
+ }
+
+ // Ignore normalized since we copy from sparse
+ bufferAttribute.normalized = false;
+
+ for ( let i = 0, il = sparseIndices.length; i < il; i ++ ) {
+
+ const index = sparseIndices[ i ];
+
+ bufferAttribute.setX( index, sparseValues[ i * itemSize ] );
+ if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] );
+ if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] );
+ if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] );
+ if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' );
+
+ }
+
+ bufferAttribute.normalized = normalized;
+
+ }
+
+ return bufferAttribute;
+
+ } );
+
+ }
+
+ /**
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures
+ * @param {number} textureIndex
+ * @return {Promise}
+ */
+ loadTexture( textureIndex ) {
+
+ const json = this.json;
+ const options = this.options;
+ const textureDef = json.textures[ textureIndex ];
+ const sourceIndex = textureDef.source;
+ const sourceDef = json.images[ sourceIndex ];
+
+ let loader = this.textureLoader;
+
+ if ( sourceDef.uri ) {
+
+ const handler = options.manager.getHandler( sourceDef.uri );
+ if ( handler !== null ) loader = handler;
+
+ }
+
+ return this.loadTextureImage( textureIndex, sourceIndex, loader );
+
+ }
+
+ loadTextureImage( textureIndex, sourceIndex, loader ) {
+
+ const parser = this;
+ const json = this.json;
+
+ const textureDef = json.textures[ textureIndex ];
+ const sourceDef = json.images[ sourceIndex ];
+
+ const cacheKey = ( sourceDef.uri || sourceDef.bufferView ) + ':' + textureDef.sampler;
+
+ if ( this.textureCache[ cacheKey ] ) {
+
+ // See https://github.com/mrdoob/three.js/issues/21559.
+ return this.textureCache[ cacheKey ];
+
+ }
+
+ const promise = this.loadImageSource( sourceIndex, loader ).then( function ( texture ) {
+
+ texture.flipY = false;
+
+ texture.name = textureDef.name || sourceDef.name || '';
+
+ if ( texture.name === '' && typeof sourceDef.uri === 'string' && sourceDef.uri.startsWith( 'data:image/' ) === false ) {
+
+ texture.name = sourceDef.uri;
+
+ }
+
+ const samplers = json.samplers || {};
+ const sampler = samplers[ textureDef.sampler ] || {};
+
+ texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || LinearFilter;
+ texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || LinearMipmapLinearFilter;
+ texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || RepeatWrapping;
+ texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || RepeatWrapping;
+
+ parser.associations.set( texture, { textures: textureIndex } );
+
+ return texture;
+
+ } ).catch( function () {
+
+ return null;
+
+ } );
+
+ this.textureCache[ cacheKey ] = promise;
+
+ return promise;
+
+ }
+
+ loadImageSource( sourceIndex, loader ) {
+
+ const parser = this;
+ const json = this.json;
+ const options = this.options;
+
+ if ( this.sourceCache[ sourceIndex ] !== undefined ) {
+
+ return this.sourceCache[ sourceIndex ].then( ( texture ) => texture.clone() );
+
+ }
+
+ const sourceDef = json.images[ sourceIndex ];
+
+ const URL = self.URL || self.webkitURL;
+
+ let sourceURI = sourceDef.uri || '';
+ let isObjectURL = false;
+
+ if ( sourceDef.bufferView !== undefined ) {
+
+ // Load binary image data from bufferView, if provided.
+
+ sourceURI = parser.getDependency( 'bufferView', sourceDef.bufferView ).then( function ( bufferView ) {
+
+ isObjectURL = true;
+ const blob = new Blob( [ bufferView ], { type: sourceDef.mimeType } );
+ sourceURI = URL.createObjectURL( blob );
+ return sourceURI;
+
+ } );
+
+ } else if ( sourceDef.uri === undefined ) {
+
+ throw new Error( 'THREE.GLTFLoader: Image ' + sourceIndex + ' is missing URI and bufferView' );
+
+ }
+
+ const promise = Promise.resolve( sourceURI ).then( function ( sourceURI ) {
+
+ return new Promise( function ( resolve, reject ) {
+
+ let onLoad = resolve;
+
+ if ( loader.isImageBitmapLoader === true ) {
+
+ onLoad = function ( imageBitmap ) {
+
+ const texture = new Texture( imageBitmap );
+ texture.needsUpdate = true;
+
+ resolve( texture );
+
+ };
+
+ }
+
+ loader.load( LoaderUtils.resolveURL( sourceURI, options.path ), onLoad, undefined, reject );
+
+ } );
+
+ } ).then( function ( texture ) {
+
+ // Clean up resources and configure Texture.
+
+ if ( isObjectURL === true ) {
+
+ URL.revokeObjectURL( sourceURI );
+
+ }
+
+ assignExtrasToUserData( texture, sourceDef );
+
+ texture.userData.mimeType = sourceDef.mimeType || getImageURIMimeType( sourceDef.uri );
+
+ return texture;
+
+ } ).catch( function ( error ) {
+
+ console.error( 'THREE.GLTFLoader: Couldn\'t load texture', sourceURI );
+ throw error;
+
+ } );
+
+ this.sourceCache[ sourceIndex ] = promise;
+ return promise;
+
+ }
+
+ /**
+ * Asynchronously assigns a texture to the given material parameters.
+ * @param {Object} materialParams
+ * @param {string} mapName
+ * @param {Object} mapDef
+ * @return {Promise}
+ */
+ assignTexture( materialParams, mapName, mapDef, colorSpace ) {
+
+ const parser = this;
+
+ return this.getDependency( 'texture', mapDef.index ).then( function ( texture ) {
+
+ if ( ! texture ) return null;
+
+ if ( mapDef.texCoord !== undefined && mapDef.texCoord > 0 ) {
+
+ texture = texture.clone();
+ texture.channel = mapDef.texCoord;
+
+ }
+
+ if ( parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] ) {
+
+ const transform = mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] : undefined;
+
+ if ( transform ) {
+
+ const gltfReference = parser.associations.get( texture );
+ texture = parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture( texture, transform );
+ parser.associations.set( texture, gltfReference );
+
+ }
+
+ }
+
+ if ( colorSpace !== undefined ) {
+
+ texture.colorSpace = colorSpace;
+
+ }
+
+ materialParams[ mapName ] = texture;
+
+ return texture;
+
+ } );
+
+ }
+
+ /**
+ * Assigns final material to a Mesh, Line, or Points instance. The instance
+ * already has a material (generated from the glTF material options alone)
+ * but reuse of the same glTF material may require multiple threejs materials
+ * to accommodate different primitive types, defines, etc. New materials will
+ * be created if necessary, and reused from a cache.
+ * @param {Object3D} mesh Mesh, Line, or Points instance.
+ */
+ assignFinalMaterial( mesh ) {
+
+ const geometry = mesh.geometry;
+ let material = mesh.material;
+
+ const useDerivativeTangents = geometry.attributes.tangent === undefined;
+ const useVertexColors = geometry.attributes.color !== undefined;
+ const useFlatShading = geometry.attributes.normal === undefined;
+
+ if ( mesh.isPoints ) {
+
+ const cacheKey = 'PointsMaterial:' + material.uuid;
+
+ let pointsMaterial = this.cache.get( cacheKey );
+
+ if ( ! pointsMaterial ) {
+
+ pointsMaterial = new PointsMaterial();
+ Material.prototype.copy.call( pointsMaterial, material );
+ pointsMaterial.color.copy( material.color );
+ pointsMaterial.map = material.map;
+ pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px
+
+ this.cache.add( cacheKey, pointsMaterial );
+
+ }
+
+ material = pointsMaterial;
+
+ } else if ( mesh.isLine ) {
+
+ const cacheKey = 'LineBasicMaterial:' + material.uuid;
+
+ let lineMaterial = this.cache.get( cacheKey );
+
+ if ( ! lineMaterial ) {
+
+ lineMaterial = new LineBasicMaterial();
+ Material.prototype.copy.call( lineMaterial, material );
+ lineMaterial.color.copy( material.color );
+ lineMaterial.map = material.map;
+
+ this.cache.add( cacheKey, lineMaterial );
+
+ }
+
+ material = lineMaterial;
+
+ }
+
+ // Clone the material if it will be modified
+ if ( useDerivativeTangents || useVertexColors || useFlatShading ) {
+
+ let cacheKey = 'ClonedMaterial:' + material.uuid + ':';
+
+ if ( useDerivativeTangents ) cacheKey += 'derivative-tangents:';
+ if ( useVertexColors ) cacheKey += 'vertex-colors:';
+ if ( useFlatShading ) cacheKey += 'flat-shading:';
+
+ let cachedMaterial = this.cache.get( cacheKey );
+
+ if ( ! cachedMaterial ) {
+
+ cachedMaterial = material.clone();
+
+ if ( useVertexColors ) cachedMaterial.vertexColors = true;
+ if ( useFlatShading ) cachedMaterial.flatShading = true;
+
+ if ( useDerivativeTangents ) {
+
+ // https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995
+ if ( cachedMaterial.normalScale ) cachedMaterial.normalScale.y *= - 1;
+ if ( cachedMaterial.clearcoatNormalScale ) cachedMaterial.clearcoatNormalScale.y *= - 1;
+
+ }
+
+ this.cache.add( cacheKey, cachedMaterial );
+
+ this.associations.set( cachedMaterial, this.associations.get( material ) );
+
+ }
+
+ material = cachedMaterial;
+
+ }
+
+ mesh.material = material;
+
+ }
+
+ getMaterialType( /* materialIndex */ ) {
+
+ return MeshStandardMaterial;
+
+ }
+
+ /**
+ * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials
+ * @param {number} materialIndex
+ * @return {Promise}
+ */
+ loadMaterial( materialIndex ) {
+
+ const parser = this;
+ const json = this.json;
+ const extensions = this.extensions;
+ const materialDef = json.materials[ materialIndex ];
+
+ let materialType;
+ const materialParams = {};
+ const materialExtensions = materialDef.extensions || {};
+
+ const pending = [];
+
+ if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) {
+
+ const kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ];
+ materialType = kmuExtension.getMaterialType();
+ pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) );
+
+ } else {
+
+ // Specification:
+ // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material
+
+ const metallicRoughness = materialDef.pbrMetallicRoughness || {};
+
+ materialParams.color = new Color( 1.0, 1.0, 1.0 );
+ materialParams.opacity = 1.0;
+
+ if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
+
+ const array = metallicRoughness.baseColorFactor;
+
+ materialParams.color.setRGB( array[ 0 ], array[ 1 ], array[ 2 ], LinearSRGBColorSpace );
+ materialParams.opacity = array[ 3 ];
+
+ }
+
+ if ( metallicRoughness.baseColorTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, SRGBColorSpace ) );
+
+ }
+
+ materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0;
+ materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;
+
+ if ( metallicRoughness.metallicRoughnessTexture !== undefined ) {
+
+ pending.push( parser.assignTexture( materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture ) );
+ pending.push( parser.assignTexture( materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture ) );
+
+ }
+
+ materialType = this._invokeOne( function ( ext ) {
+
+ return ext.getMaterialType && ext.getMaterialType( materialIndex );
+
+ } );
+
+ pending.push( Promise.all( this._invokeAll( function ( ext ) {
+
+ return ext.extendMaterialParams && ext.extendMaterialParams( materialIndex, materialParams );
+
+ } ) ) );
+
+ }
+
+ if ( materialDef.doubleSided === true ) {
+
+ materialParams.side = DoubleSide;
+
+ }
+
+ const alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;
+
+ if ( alphaMode === ALPHA_MODES.BLEND ) {
+
+ materialParams.transparent = true;
+
+ // See: https://github.com/mrdoob/three.js/issues/17706
+ materialParams.depthWrite = false;
+
+ } else {
+
+ materialParams.transparent = false;
+
+ if ( alphaMode === ALPHA_MODES.MASK ) {
+
+ materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;
+
+ }
+
+ }
+
+ if ( materialDef.normalTexture !== undefined && materialType !== MeshBasicMaterial ) {
+
+ pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture ) );
+
+ materialParams.normalScale = new Vector2( 1, 1 );
+
+ if ( materialDef.normalTexture.scale !== undefined ) {
+
+ const scale = materialDef.normalTexture.scale;
+
+ materialParams.normalScale.set( scale, scale );
+
+ }
+
+ }
+
+ if ( materialDef.occlusionTexture !== undefined && materialType !== MeshBasicMaterial ) {
+
+ pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture ) );
+
+ if ( materialDef.occlusionTexture.strength !== undefined ) {
+
+ materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;
+
+ }
+
+ }
+
+ if ( materialDef.emissiveFactor !== undefined && materialType !== MeshBasicMaterial ) {
+
+ const emissiveFactor = materialDef.emissiveFactor;
+ materialParams.emissive = new Color().setRGB( emissiveFactor[ 0 ], emissiveFactor[ 1 ], emissiveFactor[ 2 ], LinearSRGBColorSpace );
+
+ }
+
+ if ( materialDef.emissiveTexture !== undefined && materialType !== MeshBasicMaterial ) {
+
+ pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture, SRGBColorSpace ) );
+
+ }
+
+ return Promise.all( pending ).then( function () {
+
+ const material = new materialType( materialParams );
+
+ if ( materialDef.name ) material.name = materialDef.name;
+
+ assignExtrasToUserData( material, materialDef );
+
+ parser.associations.set( material, { materials: materialIndex } );
+
+ if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef );
+
+ return material;
+
+ } );
+
+ }
+
+ /** When Object3D instances are targeted by animation, they need unique names. */
+ createUniqueName( originalName ) {
+
+ const sanitizedName = PropertyBinding.sanitizeNodeName( originalName || '' );
+
+ if ( sanitizedName in this.nodeNamesUsed ) {
+
+ return sanitizedName + '_' + ( ++ this.nodeNamesUsed[ sanitizedName ] );
+
+ } else {
+
+ this.nodeNamesUsed[ sanitizedName ] = 0;
+
+ return sanitizedName;
+
+ }
+
+ }
+
+ /**
+ * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry
+ *
+ * Creates BufferGeometries from primitives.
+ *
+ * @param {Array} primitives
+ * @return {Promise>}
+ */
+ loadGeometries( primitives ) {
+
+ const parser = this;
+ const extensions = this.extensions;
+ const cache = this.primitiveCache;
+
+ function createDracoPrimitive( primitive ) {
+
+ return extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]
+ .decodePrimitive( primitive, parser )
+ .then( function ( geometry ) {
+
+ return addPrimitiveAttributes( geometry, primitive, parser );
+
+ } );
+
+ }
+
+ const pending = [];
+
+ for ( let i = 0, il = primitives.length; i < il; i ++ ) {
+
+ const primitive = primitives[ i ];
+ const cacheKey = createPrimitiveKey( primitive );
+
+ // See if we've already created this geometry
+ const cached = cache[ cacheKey ];
+
+ if ( cached ) {
+
+ // Use the cached geometry if it exists
+ pending.push( cached.promise );
+
+ } else {
+
+ let geometryPromise;
+
+ if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) {
+
+ // Use DRACO geometry if available
+ geometryPromise = createDracoPrimitive( primitive );
+
+ } else {
+
+ // Otherwise create a new geometry
+ geometryPromise = addPrimitiveAttributes( new BufferGeometry(), primitive, parser );
+
+ }
+
+ // Cache this geometry
+ cache[ cacheKey ] = { primitive: primitive, promise: geometryPromise };
+
+ pending.push( geometryPromise );
+
+ }
+
+ }
+
+ return Promise.all( pending );
+
+ }
+
+ /**
+ * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes
+ * @param {number} meshIndex
+ * @return {Promise}
+ */
+ loadMesh( meshIndex ) {
+
+ const parser = this;
+ const json = this.json;
+ const extensions = this.extensions;
+
+ const meshDef = json.meshes[ meshIndex ];
+ const primitives = meshDef.primitives;
+
+ const pending = [];
+
+ for ( let i = 0, il = primitives.length; i < il; i ++ ) {
+
+ const material = primitives[ i ].material === undefined
+ ? createDefaultMaterial( this.cache )
+ : this.getDependency( 'material', primitives[ i ].material );
+
+ pending.push( material );
+
+ }
+
+ pending.push( parser.loadGeometries( primitives ) );
+
+ return Promise.all( pending ).then( function ( results ) {
+
+ const materials = results.slice( 0, results.length - 1 );
+ const geometries = results[ results.length - 1 ];
+
+ const meshes = [];
+
+ for ( let i = 0, il = geometries.length; i < il; i ++ ) {
+
+ const geometry = geometries[ i ];
+ const primitive = primitives[ i ];
+
+ // 1. create Mesh
+
+ let mesh;
+
+ const material = materials[ i ];
+
+ if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES ||
+ primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ||
+ primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ||
+ primitive.mode === undefined ) {
+
+ // .isSkinnedMesh isn't in glTF spec. See ._markDefs()
+ mesh = meshDef.isSkinnedMesh === true
+ ? new SkinnedMesh( geometry, material )
+ : new Mesh( geometry, material );
+
+ if ( mesh.isSkinnedMesh === true ) {
+
+ // normalize skin weights to fix malformed assets (see #15319)
+ mesh.normalizeSkinWeights();
+
+ }
+
+ if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) {
+
+ mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleStripDrawMode );
+
+ } else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) {
+
+ mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleFanDrawMode );
+
+ }
+
+ } else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) {
+
+ mesh = new LineSegments( geometry, material );
+
+ } else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) {
+
+ mesh = new Line( geometry, material );
+
+ } else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) {
+
+ mesh = new LineLoop( geometry, material );
+
+ } else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) {
+
+ mesh = new Points( geometry, material );
+
+ } else {
+
+ throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode );
+
+ }
+
+ if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) {
+
+ updateMorphTargets( mesh, meshDef );
+
+ }
+
+ mesh.name = parser.createUniqueName( meshDef.name || ( 'mesh_' + meshIndex ) );
+
+ assignExtrasToUserData( mesh, meshDef );
+
+ if ( primitive.extensions ) addUnknownExtensionsToUserData( extensions, mesh, primitive );
+
+ parser.assignFinalMaterial( mesh );
+
+ meshes.push( mesh );
+
+ }
+
+ for ( let i = 0, il = meshes.length; i < il; i ++ ) {
+
+ parser.associations.set( meshes[ i ], {
+ meshes: meshIndex,
+ primitives: i
+ } );
+
+ }
+
+ if ( meshes.length === 1 ) {
+
+ if ( meshDef.extensions ) addUnknownExtensionsToUserData( extensions, meshes[ 0 ], meshDef );
+
+ return meshes[ 0 ];
+
+ }
+
+ const group = new Group();
+
+ if ( meshDef.extensions ) addUnknownExtensionsToUserData( extensions, group, meshDef );
+
+ parser.associations.set( group, { meshes: meshIndex } );
+
+ for ( let i = 0, il = meshes.length; i < il; i ++ ) {
+
+ group.add( meshes[ i ] );
+
+ }
+
+ return group;
+
+ } );
+
+ }
+
+ /**
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras
+ * @param {number} cameraIndex
+ * @return {Promise}
+ */
+ loadCamera( cameraIndex ) {
+
+ let camera;
+ const cameraDef = this.json.cameras[ cameraIndex ];
+ const params = cameraDef[ cameraDef.type ];
+
+ if ( ! params ) {
+
+ console.warn( 'THREE.GLTFLoader: Missing camera parameters.' );
+ return;
+
+ }
+
+ if ( cameraDef.type === 'perspective' ) {
+
+ camera = new PerspectiveCamera( MathUtils.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 );
+
+ } else if ( cameraDef.type === 'orthographic' ) {
+
+ camera = new OrthographicCamera( - params.xmag, params.xmag, params.ymag, - params.ymag, params.znear, params.zfar );
+
+ }
+
+ if ( cameraDef.name ) camera.name = this.createUniqueName( cameraDef.name );
+
+ assignExtrasToUserData( camera, cameraDef );
+
+ return Promise.resolve( camera );
+
+ }
+
+ /**
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins
+ * @param {number} skinIndex
+ * @return {Promise}
+ */
+ loadSkin( skinIndex ) {
+
+ const skinDef = this.json.skins[ skinIndex ];
+
+ const pending = [];
+
+ for ( let i = 0, il = skinDef.joints.length; i < il; i ++ ) {
+
+ pending.push( this._loadNodeShallow( skinDef.joints[ i ] ) );
+
+ }
+
+ if ( skinDef.inverseBindMatrices !== undefined ) {
+
+ pending.push( this.getDependency( 'accessor', skinDef.inverseBindMatrices ) );
+
+ } else {
+
+ pending.push( null );
+
+ }
+
+ return Promise.all( pending ).then( function ( results ) {
+
+ const inverseBindMatrices = results.pop();
+ const jointNodes = results;
+
+ // Note that bones (joint nodes) may or may not be in the
+ // scene graph at this time.
+
+ const bones = [];
+ const boneInverses = [];
+
+ for ( let i = 0, il = jointNodes.length; i < il; i ++ ) {
+
+ const jointNode = jointNodes[ i ];
+
+ if ( jointNode ) {
+
+ bones.push( jointNode );
+
+ const mat = new Matrix4();
+
+ if ( inverseBindMatrices !== null ) {
+
+ mat.fromArray( inverseBindMatrices.array, i * 16 );
+
+ }
+
+ boneInverses.push( mat );
+
+ } else {
+
+ console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', skinDef.joints[ i ] );
+
+ }
+
+ }
+
+ return new Skeleton( bones, boneInverses );
+
+ } );
+
+ }
+
+ /**
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations
+ * @param {number} animationIndex
+ * @return {Promise}
+ */
+ loadAnimation( animationIndex ) {
+
+ const json = this.json;
+ const parser = this;
+
+ const animationDef = json.animations[ animationIndex ];
+ const animationName = animationDef.name ? animationDef.name : 'animation_' + animationIndex;
+
+ const pendingNodes = [];
+ const pendingInputAccessors = [];
+ const pendingOutputAccessors = [];
+ const pendingSamplers = [];
+ const pendingTargets = [];
+
+ for ( let i = 0, il = animationDef.channels.length; i < il; i ++ ) {
+
+ const channel = animationDef.channels[ i ];
+ const sampler = animationDef.samplers[ channel.sampler ];
+ const target = channel.target;
+ const name = target.node;
+ const input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input;
+ const output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output;
+
+ if ( target.node === undefined ) continue;
+
+ pendingNodes.push( this.getDependency( 'node', name ) );
+ pendingInputAccessors.push( this.getDependency( 'accessor', input ) );
+ pendingOutputAccessors.push( this.getDependency( 'accessor', output ) );
+ pendingSamplers.push( sampler );
+ pendingTargets.push( target );
+
+ }
+
+ return Promise.all( [
+
+ Promise.all( pendingNodes ),
+ Promise.all( pendingInputAccessors ),
+ Promise.all( pendingOutputAccessors ),
+ Promise.all( pendingSamplers ),
+ Promise.all( pendingTargets )
+
+ ] ).then( function ( dependencies ) {
+
+ const nodes = dependencies[ 0 ];
+ const inputAccessors = dependencies[ 1 ];
+ const outputAccessors = dependencies[ 2 ];
+ const samplers = dependencies[ 3 ];
+ const targets = dependencies[ 4 ];
+
+ const tracks = [];
+
+ for ( let i = 0, il = nodes.length; i < il; i ++ ) {
+
+ const node = nodes[ i ];
+ const inputAccessor = inputAccessors[ i ];
+ const outputAccessor = outputAccessors[ i ];
+ const sampler = samplers[ i ];
+ const target = targets[ i ];
+
+ if ( node === undefined ) continue;
+
+ if ( node.updateMatrix ) {
+
+ node.updateMatrix();
+
+ }
+
+ const createdTracks = parser._createAnimationTracks( node, inputAccessor, outputAccessor, sampler, target );
+
+ if ( createdTracks ) {
+
+ for ( let k = 0; k < createdTracks.length; k ++ ) {
+
+ tracks.push( createdTracks[ k ] );
+
+ }
+
+ }
+
+ }
+
+ return new AnimationClip( animationName, undefined, tracks );
+
+ } );
+
+ }
+
+ createNodeMesh( nodeIndex ) {
+
+ const json = this.json;
+ const parser = this;
+ const nodeDef = json.nodes[ nodeIndex ];
+
+ if ( nodeDef.mesh === undefined ) return null;
+
+ return parser.getDependency( 'mesh', nodeDef.mesh ).then( function ( mesh ) {
+
+ const node = parser._getNodeRef( parser.meshCache, nodeDef.mesh, mesh );
+
+ // if weights are provided on the node, override weights on the mesh.
+ if ( nodeDef.weights !== undefined ) {
+
+ node.traverse( function ( o ) {
+
+ if ( ! o.isMesh ) return;
+
+ for ( let i = 0, il = nodeDef.weights.length; i < il; i ++ ) {
+
+ o.morphTargetInfluences[ i ] = nodeDef.weights[ i ];
+
+ }
+
+ } );
+
+ }
+
+ return node;
+
+ } );
+
+ }
+
+ /**
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy
+ * @param {number} nodeIndex
+ * @return {Promise}
+ */
+ loadNode( nodeIndex ) {
+
+ const json = this.json;
+ const parser = this;
+
+ const nodeDef = json.nodes[ nodeIndex ];
+
+ const nodePending = parser._loadNodeShallow( nodeIndex );
+
+ const childPending = [];
+ const childrenDef = nodeDef.children || [];
+
+ for ( let i = 0, il = childrenDef.length; i < il; i ++ ) {
+
+ childPending.push( parser.getDependency( 'node', childrenDef[ i ] ) );
+
+ }
+
+ const skeletonPending = nodeDef.skin === undefined
+ ? Promise.resolve( null )
+ : parser.getDependency( 'skin', nodeDef.skin );
+
+ return Promise.all( [
+ nodePending,
+ Promise.all( childPending ),
+ skeletonPending
+ ] ).then( function ( results ) {
+
+ const node = results[ 0 ];
+ const children = results[ 1 ];
+ const skeleton = results[ 2 ];
+
+ if ( skeleton !== null ) {
+
+ // This full traverse should be fine because
+ // child glTF nodes have not been added to this node yet.
+ node.traverse( function ( mesh ) {
+
+ if ( ! mesh.isSkinnedMesh ) return;
+
+ mesh.bind( skeleton, _identityMatrix );
+
+ } );
+
+ }
+
+ for ( let i = 0, il = children.length; i < il; i ++ ) {
+
+ node.add( children[ i ] );
+
+ }
+
+ return node;
+
+ } );
+
+ }
+
+ // ._loadNodeShallow() parses a single node.
+ // skin and child nodes are created and added in .loadNode() (no '_' prefix).
+ _loadNodeShallow( nodeIndex ) {
+
+ const json = this.json;
+ const extensions = this.extensions;
+ const parser = this;
+
+ // This method is called from .loadNode() and .loadSkin().
+ // Cache a node to avoid duplication.
+
+ if ( this.nodeCache[ nodeIndex ] !== undefined ) {
+
+ return this.nodeCache[ nodeIndex ];
+
+ }
+
+ const nodeDef = json.nodes[ nodeIndex ];
+
+ // reserve node's name before its dependencies, so the root has the intended name.
+ const nodeName = nodeDef.name ? parser.createUniqueName( nodeDef.name ) : '';
+
+ const pending = [];
+
+ const meshPromise = parser._invokeOne( function ( ext ) {
+
+ return ext.createNodeMesh && ext.createNodeMesh( nodeIndex );
+
+ } );
+
+ if ( meshPromise ) {
+
+ pending.push( meshPromise );
+
+ }
+
+ if ( nodeDef.camera !== undefined ) {
+
+ pending.push( parser.getDependency( 'camera', nodeDef.camera ).then( function ( camera ) {
+
+ return parser._getNodeRef( parser.cameraCache, nodeDef.camera, camera );
+
+ } ) );
+
+ }
+
+ parser._invokeAll( function ( ext ) {
+
+ return ext.createNodeAttachment && ext.createNodeAttachment( nodeIndex );
+
+ } ).forEach( function ( promise ) {
+
+ pending.push( promise );
+
+ } );
+
+ this.nodeCache[ nodeIndex ] = Promise.all( pending ).then( function ( objects ) {
+
+ let node;
+
+ // .isBone isn't in glTF spec. See ._markDefs
+ if ( nodeDef.isBone === true ) {
+
+ node = new Bone();
+
+ } else if ( objects.length > 1 ) {
+
+ node = new Group();
+
+ } else if ( objects.length === 1 ) {
+
+ node = objects[ 0 ];
+
+ } else {
+
+ node = new Object3D();
+
+ }
+
+ if ( node !== objects[ 0 ] ) {
+
+ for ( let i = 0, il = objects.length; i < il; i ++ ) {
+
+ node.add( objects[ i ] );
+
+ }
+
+ }
+
+ if ( nodeDef.name ) {
+
+ node.userData.name = nodeDef.name;
+ node.name = nodeName;
+
+ }
+
+ assignExtrasToUserData( node, nodeDef );
+
+ if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef );
+
+ if ( nodeDef.matrix !== undefined ) {
+
+ const matrix = new Matrix4();
+ matrix.fromArray( nodeDef.matrix );
+ node.applyMatrix4( matrix );
+
+ } else {
+
+ if ( nodeDef.translation !== undefined ) {
+
+ node.position.fromArray( nodeDef.translation );
+
+ }
+
+ if ( nodeDef.rotation !== undefined ) {
+
+ node.quaternion.fromArray( nodeDef.rotation );
+
+ }
+
+ if ( nodeDef.scale !== undefined ) {
+
+ node.scale.fromArray( nodeDef.scale );
+
+ }
+
+ }
+
+ if ( ! parser.associations.has( node ) ) {
+
+ parser.associations.set( node, {} );
+
+ }
+
+ parser.associations.get( node ).nodes = nodeIndex;
+
+ return node;
+
+ } );
+
+ return this.nodeCache[ nodeIndex ];
+
+ }
+
+ /**
+ * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes
+ * @param {number} sceneIndex
+ * @return {Promise}
+ */
+ loadScene( sceneIndex ) {
+
+ const extensions = this.extensions;
+ const sceneDef = this.json.scenes[ sceneIndex ];
+ const parser = this;
+
+ // Loader returns Group, not Scene.
+ // See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172
+ const scene = new Group();
+ if ( sceneDef.name ) scene.name = parser.createUniqueName( sceneDef.name );
+
+ assignExtrasToUserData( scene, sceneDef );
+
+ if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef );
+
+ const nodeIds = sceneDef.nodes || [];
+
+ const pending = [];
+
+ for ( let i = 0, il = nodeIds.length; i < il; i ++ ) {
+
+ pending.push( parser.getDependency( 'node', nodeIds[ i ] ) );
+
+ }
+
+ return Promise.all( pending ).then( function ( nodes ) {
+
+ for ( let i = 0, il = nodes.length; i < il; i ++ ) {
+
+ scene.add( nodes[ i ] );
+
+ }
+
+ // Removes dangling associations, associations that reference a node that
+ // didn't make it into the scene.
+ const reduceAssociations = ( node ) => {
+
+ const reducedAssociations = new Map();
+
+ for ( const [ key, value ] of parser.associations ) {
+
+ if ( key instanceof Material || key instanceof Texture ) {
+
+ reducedAssociations.set( key, value );
+
+ }
+
+ }
+
+ node.traverse( ( node ) => {
+
+ const mappings = parser.associations.get( node );
+
+ if ( mappings != null ) {
+
+ reducedAssociations.set( node, mappings );
+
+ }
+
+ } );
+
+ return reducedAssociations;
+
+ };
+
+ parser.associations = reduceAssociations( scene );
+
+ return scene;
+
+ } );
+
+ }
+
+ _createAnimationTracks( node, inputAccessor, outputAccessor, sampler, target ) {
+
+ const tracks = [];
+
+ const targetName = node.name ? node.name : node.uuid;
+ const targetNames = [];
+
+ if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) {
+
+ node.traverse( function ( object ) {
+
+ if ( object.morphTargetInfluences ) {
+
+ targetNames.push( object.name ? object.name : object.uuid );
+
+ }
+
+ } );
+
+ } else {
+
+ targetNames.push( targetName );
+
+ }
+
+ let TypedKeyframeTrack;
+
+ switch ( PATH_PROPERTIES[ target.path ] ) {
+
+ case PATH_PROPERTIES.weights:
+
+ TypedKeyframeTrack = NumberKeyframeTrack;
+ break;
+
+ case PATH_PROPERTIES.rotation:
+
+ TypedKeyframeTrack = QuaternionKeyframeTrack;
+ break;
+
+ case PATH_PROPERTIES.position:
+ case PATH_PROPERTIES.scale:
+
+ TypedKeyframeTrack = VectorKeyframeTrack;
+ break;
+
+ default:
+
+ switch ( outputAccessor.itemSize ) {
+
+ case 1:
+ TypedKeyframeTrack = NumberKeyframeTrack;
+ break;
+ case 2:
+ case 3:
+ default:
+ TypedKeyframeTrack = VectorKeyframeTrack;
+ break;
+
+ }
+
+ break;
+
+ }
+
+ const interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : InterpolateLinear;
+
+
+ const outputArray = this._getArrayFromAccessor( outputAccessor );
+
+ for ( let j = 0, jl = targetNames.length; j < jl; j ++ ) {
+
+ const track = new TypedKeyframeTrack(
+ targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ],
+ inputAccessor.array,
+ outputArray,
+ interpolation
+ );
+
+ // Override interpolation with custom factory method.
+ if ( sampler.interpolation === 'CUBICSPLINE' ) {
+
+ this._createCubicSplineTrackInterpolant( track );
+
+ }
+
+ tracks.push( track );
+
+ }
+
+ return tracks;
+
+ }
+
+ _getArrayFromAccessor( accessor ) {
+
+ let outputArray = accessor.array;
+
+ if ( accessor.normalized ) {
+
+ const scale = getNormalizedComponentScale( outputArray.constructor );
+ const scaled = new Float32Array( outputArray.length );
+
+ for ( let j = 0, jl = outputArray.length; j < jl; j ++ ) {
+
+ scaled[ j ] = outputArray[ j ] * scale;
+
+ }
+
+ outputArray = scaled;
+
+ }
+
+ return outputArray;
+
+ }
+
+ _createCubicSplineTrackInterpolant( track ) {
+
+ track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) {
+
+ // A CUBICSPLINE keyframe in glTF has three output values for each input value,
+ // representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize()
+ // must be divided by three to get the interpolant's sampleSize argument.
+
+ const interpolantType = ( this instanceof QuaternionKeyframeTrack ) ? GLTFCubicSplineQuaternionInterpolant : GLTFCubicSplineInterpolant;
+
+ return new interpolantType( this.times, this.values, this.getValueSize() / 3, result );
+
+ };
+
+ // Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants.
+ track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;
+
+ }
+
+}
+
+/**
+ * @param {BufferGeometry} geometry
+ * @param {GLTF.Primitive} primitiveDef
+ * @param {GLTFParser} parser
+ */
+function computeBounds( geometry, primitiveDef, parser ) {
+
+ const attributes = primitiveDef.attributes;
+
+ const box = new Box3();
+
+ if ( attributes.POSITION !== undefined ) {
+
+ const accessor = parser.json.accessors[ attributes.POSITION ];
+
+ const min = accessor.min;
+ const max = accessor.max;
+
+ // glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.
+
+ if ( min !== undefined && max !== undefined ) {
+
+ box.set(
+ new Vector3( min[ 0 ], min[ 1 ], min[ 2 ] ),
+ new Vector3( max[ 0 ], max[ 1 ], max[ 2 ] )
+ );
+
+ if ( accessor.normalized ) {
+
+ const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] );
+ box.min.multiplyScalar( boxScale );
+ box.max.multiplyScalar( boxScale );
+
+ }
+
+ } else {
+
+ console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );
+
+ return;
+
+ }
+
+ } else {
+
+ return;
+
+ }
+
+ const targets = primitiveDef.targets;
+
+ if ( targets !== undefined ) {
+
+ const maxDisplacement = new Vector3();
+ const vector = new Vector3();
+
+ for ( let i = 0, il = targets.length; i < il; i ++ ) {
+
+ const target = targets[ i ];
+
+ if ( target.POSITION !== undefined ) {
+
+ const accessor = parser.json.accessors[ target.POSITION ];
+ const min = accessor.min;
+ const max = accessor.max;
+
+ // glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.
+
+ if ( min !== undefined && max !== undefined ) {
+
+ // we need to get max of absolute components because target weight is [-1,1]
+ vector.setX( Math.max( Math.abs( min[ 0 ] ), Math.abs( max[ 0 ] ) ) );
+ vector.setY( Math.max( Math.abs( min[ 1 ] ), Math.abs( max[ 1 ] ) ) );
+ vector.setZ( Math.max( Math.abs( min[ 2 ] ), Math.abs( max[ 2 ] ) ) );
+
+
+ if ( accessor.normalized ) {
+
+ const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] );
+ vector.multiplyScalar( boxScale );
+
+ }
+
+ // Note: this assumes that the sum of all weights is at most 1. This isn't quite correct - it's more conservative
+ // to assume that each target can have a max weight of 1. However, for some use cases - notably, when morph targets
+ // are used to implement key-frame animations and as such only two are active at a time - this results in very large
+ // boxes. So for now we make a box that's sometimes a touch too small but is hopefully mostly of reasonable size.
+ maxDisplacement.max( vector );
+
+ } else {
+
+ console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );
+
+ }
+
+ }
+
+ }
+
+ // As per comment above this box isn't conservative, but has a reasonable size for a very large number of morph targets.
+ box.expandByVector( maxDisplacement );
+
+ }
+
+ geometry.boundingBox = box;
+
+ const sphere = new Sphere();
+
+ box.getCenter( sphere.center );
+ sphere.radius = box.min.distanceTo( box.max ) / 2;
+
+ geometry.boundingSphere = sphere;
+
+}
+
+/**
+ * @param {BufferGeometry} geometry
+ * @param {GLTF.Primitive} primitiveDef
+ * @param {GLTFParser} parser
+ * @return {Promise}
+ */
+function addPrimitiveAttributes( geometry, primitiveDef, parser ) {
+
+ const attributes = primitiveDef.attributes;
+
+ const pending = [];
+
+ function assignAttributeAccessor( accessorIndex, attributeName ) {
+
+ return parser.getDependency( 'accessor', accessorIndex )
+ .then( function ( accessor ) {
+
+ geometry.setAttribute( attributeName, accessor );
+
+ } );
+
+ }
+
+ for ( const gltfAttributeName in attributes ) {
+
+ const threeAttributeName = ATTRIBUTES[ gltfAttributeName ] || gltfAttributeName.toLowerCase();
+
+ // Skip attributes already provided by e.g. Draco extension.
+ if ( threeAttributeName in geometry.attributes ) continue;
+
+ pending.push( assignAttributeAccessor( attributes[ gltfAttributeName ], threeAttributeName ) );
+
+ }
+
+ if ( primitiveDef.indices !== undefined && ! geometry.index ) {
+
+ const accessor = parser.getDependency( 'accessor', primitiveDef.indices ).then( function ( accessor ) {
+
+ geometry.setIndex( accessor );
+
+ } );
+
+ pending.push( accessor );
+
+ }
+
+ if ( ColorManagement.workingColorSpace !== LinearSRGBColorSpace && 'COLOR_0' in attributes ) {
+
+ console.warn( `THREE.GLTFLoader: Converting vertex colors from "srgb-linear" to "${ColorManagement.workingColorSpace}" not supported.` );
+
+ }
+
+ assignExtrasToUserData( geometry, primitiveDef );
+
+ computeBounds( geometry, primitiveDef, parser );
+
+ return Promise.all( pending ).then( function () {
+
+ return primitiveDef.targets !== undefined
+ ? addMorphTargets( geometry, primitiveDef.targets, parser )
+ : geometry;
+
+ } );
+
+}
+
+export { GLTFLoader };
diff --git a/examples/js/third_party/three.js/three.module.min.js b/examples/js/third_party/three.js/three.module.min.js
new file mode 100644
index 0000000..424ef1c
--- /dev/null
+++ b/examples/js/third_party/three.js/three.module.min.js
@@ -0,0 +1,6 @@
+/**
+ * @license
+ * Copyright 2010-2024 Three.js Authors
+ * SPDX-License-Identifier: MIT
+ */
+const t="169",e={LEFT:0,MIDDLE:1,RIGHT:2,ROTATE:0,DOLLY:1,PAN:2},n={ROTATE:0,PAN:1,DOLLY_PAN:2,DOLLY_ROTATE:3},i=0,r=1,s=2,a=3,o=0,l=1,c=2,h=3,u=0,d=1,p=2,m=0,f=1,g=2,v=3,_=4,x=5,y=100,M=101,S=102,b=103,w=104,T=200,E=201,A=202,R=203,C=204,P=205,I=206,L=207,U=208,N=209,D=210,O=211,F=212,B=213,z=214,k=0,V=1,H=2,G=3,W=4,X=5,j=6,q=7,Y=0,Z=1,J=2,K=0,$=1,Q=2,tt=3,et=4,nt=5,it=6,rt=7,st="attached",at="detached",ot=300,lt=301,ct=302,ht=303,ut=304,dt=306,pt=1e3,mt=1001,ft=1002,gt=1003,vt=1004,_t=1004,xt=1005,yt=1005,Mt=1006,St=1007,bt=1007,wt=1008,Tt=1008,Et=1009,At=1010,Rt=1011,Ct=1012,Pt=1013,It=1014,Lt=1015,Ut=1016,Nt=1017,Dt=1018,Ot=1020,Ft=35902,Bt=1021,zt=1022,kt=1023,Vt=1024,Ht=1025,Gt=1026,Wt=1027,Xt=1028,jt=1029,qt=1030,Yt=1031,Zt=1032,Jt=1033,Kt=33776,$t=33777,Qt=33778,te=33779,ee=35840,ne=35841,ie=35842,re=35843,se=36196,ae=37492,oe=37496,le=37808,ce=37809,he=37810,ue=37811,de=37812,pe=37813,me=37814,fe=37815,ge=37816,ve=37817,_e=37818,xe=37819,ye=37820,Me=37821,Se=36492,be=36494,we=36495,Te=36283,Ee=36284,Ae=36285,Re=36286,Ce=2200,Pe=2201,Ie=2202,Le=2300,Ue=2301,Ne=2302,De=2400,Oe=2401,Fe=2402,Be=2500,ze=2501,ke=0,Ve=1,He=2,Ge=3200,We=3201,Xe=3202,je=3203,qe=0,Ye=1,Ze="",Je="srgb",Ke="srgb-linear",$e="display-p3",Qe="display-p3-linear",tn="linear",en="srgb",nn="rec709",rn="p3",sn=0,an=7680,on=7681,ln=7682,cn=7683,hn=34055,un=34056,dn=5386,pn=512,mn=513,fn=514,gn=515,vn=516,_n=517,xn=518,yn=519,Mn=512,Sn=513,bn=514,wn=515,Tn=516,En=517,An=518,Rn=519,Cn=35044,Pn=35048,In=35040,Ln=35045,Un=35049,Nn=35041,Dn=35046,On=35050,Fn=35042,Bn="100",zn="300 es",kn=2e3,Vn=2001;class Hn{addEventListener(t,e){void 0===this._listeners&&(this._listeners={});const n=this._listeners;void 0===n[t]&&(n[t]=[]),-1===n[t].indexOf(e)&&n[t].push(e)}hasEventListener(t,e){if(void 0===this._listeners)return!1;const n=this._listeners;return void 0!==n[t]&&-1!==n[t].indexOf(e)}removeEventListener(t,e){if(void 0===this._listeners)return;const n=this._listeners[t];if(void 0!==n){const t=n.indexOf(e);-1!==t&&n.splice(t,1)}}dispatchEvent(t){if(void 0===this._listeners)return;const e=this._listeners[t.type];if(void 0!==e){t.target=this;const n=e.slice(0);for(let e=0,i=n.length;e>8&255]+Gn[t>>16&255]+Gn[t>>24&255]+"-"+Gn[255&e]+Gn[e>>8&255]+"-"+Gn[e>>16&15|64]+Gn[e>>24&255]+"-"+Gn[63&n|128]+Gn[n>>8&255]+"-"+Gn[n>>16&255]+Gn[n>>24&255]+Gn[255&i]+Gn[i>>8&255]+Gn[i>>16&255]+Gn[i>>24&255]).toLowerCase()}function Yn(t,e,n){return Math.max(e,Math.min(n,t))}function Zn(t,e){return(t%e+e)%e}function Jn(t,e,n){return(1-n)*t+n*e}function Kn(t,e){switch(e.constructor){case Float32Array:return t;case Uint32Array:return t/4294967295;case Uint16Array:return t/65535;case Uint8Array:return t/255;case Int32Array:return Math.max(t/2147483647,-1);case Int16Array:return Math.max(t/32767,-1);case Int8Array:return Math.max(t/127,-1);default:throw new Error("Invalid component type.")}}function $n(t,e){switch(e.constructor){case Float32Array:return t;case Uint32Array:return Math.round(4294967295*t);case Uint16Array:return Math.round(65535*t);case Uint8Array:return Math.round(255*t);case Int32Array:return Math.round(2147483647*t);case Int16Array:return Math.round(32767*t);case Int8Array:return Math.round(127*t);default:throw new Error("Invalid component type.")}}const Qn={DEG2RAD:Xn,RAD2DEG:jn,generateUUID:qn,clamp:Yn,euclideanModulo:Zn,mapLinear:function(t,e,n,i,r){return i+(t-e)*(r-i)/(n-e)},inverseLerp:function(t,e,n){return t!==e?(n-t)/(e-t):0},lerp:Jn,damp:function(t,e,n,i){return Jn(t,e,1-Math.exp(-n*i))},pingpong:function(t,e=1){return e-Math.abs(Zn(t,2*e)-e)},smoothstep:function(t,e,n){return t<=e?0:t>=n?1:(t=(t-e)/(n-e))*t*(3-2*t)},smootherstep:function(t,e,n){return t<=e?0:t>=n?1:(t=(t-e)/(n-e))*t*t*(t*(6*t-15)+10)},randInt:function(t,e){return t+Math.floor(Math.random()*(e-t+1))},randFloat:function(t,e){return t+Math.random()*(e-t)},randFloatSpread:function(t){return t*(.5-Math.random())},seededRandom:function(t){void 0!==t&&(Wn=t);let e=Wn+=1831565813;return e=Math.imul(e^e>>>15,1|e),e^=e+Math.imul(e^e>>>7,61|e),((e^e>>>14)>>>0)/4294967296},degToRad:function(t){return t*Xn},radToDeg:function(t){return t*jn},isPowerOfTwo:function(t){return 0==(t&t-1)&&0!==t},ceilPowerOfTwo:function(t){return Math.pow(2,Math.ceil(Math.log(t)/Math.LN2))},floorPowerOfTwo:function(t){return Math.pow(2,Math.floor(Math.log(t)/Math.LN2))},setQuaternionFromProperEuler:function(t,e,n,i,r){const s=Math.cos,a=Math.sin,o=s(n/2),l=a(n/2),c=s((e+i)/2),h=a((e+i)/2),u=s((e-i)/2),d=a((e-i)/2),p=s((i-e)/2),m=a((i-e)/2);switch(r){case"XYX":t.set(o*h,l*u,l*d,o*c);break;case"YZY":t.set(l*d,o*h,l*u,o*c);break;case"ZXZ":t.set(l*u,l*d,o*h,o*c);break;case"XZX":t.set(o*h,l*m,l*p,o*c);break;case"YXY":t.set(l*p,o*h,l*m,o*c);break;case"ZYZ":t.set(l*m,l*p,o*h,o*c);break;default:console.warn("THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: "+r)}},normalize:$n,denormalize:Kn};class ti{constructor(t=0,e=0){ti.prototype.isVector2=!0,this.x=t,this.y=e}get width(){return this.x}set width(t){this.x=t}get height(){return this.y}set height(t){this.y=t}set(t,e){return this.x=t,this.y=e,this}setScalar(t){return this.x=t,this.y=t,this}setX(t){return this.x=t,this}setY(t){return this.y=t,this}setComponent(t,e){switch(t){case 0:this.x=e;break;case 1:this.y=e;break;default:throw new Error("index is out of range: "+t)}return this}getComponent(t){switch(t){case 0:return this.x;case 1:return this.y;default:throw new Error("index is out of range: "+t)}}clone(){return new this.constructor(this.x,this.y)}copy(t){return this.x=t.x,this.y=t.y,this}add(t){return this.x+=t.x,this.y+=t.y,this}addScalar(t){return this.x+=t,this.y+=t,this}addVectors(t,e){return this.x=t.x+e.x,this.y=t.y+e.y,this}addScaledVector(t,e){return this.x+=t.x*e,this.y+=t.y*e,this}sub(t){return this.x-=t.x,this.y-=t.y,this}subScalar(t){return this.x-=t,this.y-=t,this}subVectors(t,e){return this.x=t.x-e.x,this.y=t.y-e.y,this}multiply(t){return this.x*=t.x,this.y*=t.y,this}multiplyScalar(t){return this.x*=t,this.y*=t,this}divide(t){return this.x/=t.x,this.y/=t.y,this}divideScalar(t){return this.multiplyScalar(1/t)}applyMatrix3(t){const e=this.x,n=this.y,i=t.elements;return this.x=i[0]*e+i[3]*n+i[6],this.y=i[1]*e+i[4]*n+i[7],this}min(t){return this.x=Math.min(this.x,t.x),this.y=Math.min(this.y,t.y),this}max(t){return this.x=Math.max(this.x,t.x),this.y=Math.max(this.y,t.y),this}clamp(t,e){return this.x=Math.max(t.x,Math.min(e.x,this.x)),this.y=Math.max(t.y,Math.min(e.y,this.y)),this}clampScalar(t,e){return this.x=Math.max(t,Math.min(e,this.x)),this.y=Math.max(t,Math.min(e,this.y)),this}clampLength(t,e){const n=this.length();return this.divideScalar(n||1).multiplyScalar(Math.max(t,Math.min(e,n)))}floor(){return this.x=Math.floor(this.x),this.y=Math.floor(this.y),this}ceil(){return this.x=Math.ceil(this.x),this.y=Math.ceil(this.y),this}round(){return this.x=Math.round(this.x),this.y=Math.round(this.y),this}roundToZero(){return this.x=Math.trunc(this.x),this.y=Math.trunc(this.y),this}negate(){return this.x=-this.x,this.y=-this.y,this}dot(t){return this.x*t.x+this.y*t.y}cross(t){return this.x*t.y-this.y*t.x}lengthSq(){return this.x*this.x+this.y*this.y}length(){return Math.sqrt(this.x*this.x+this.y*this.y)}manhattanLength(){return Math.abs(this.x)+Math.abs(this.y)}normalize(){return this.divideScalar(this.length()||1)}angle(){return Math.atan2(-this.y,-this.x)+Math.PI}angleTo(t){const e=Math.sqrt(this.lengthSq()*t.lengthSq());if(0===e)return Math.PI/2;const n=this.dot(t)/e;return Math.acos(Yn(n,-1,1))}distanceTo(t){return Math.sqrt(this.distanceToSquared(t))}distanceToSquared(t){const e=this.x-t.x,n=this.y-t.y;return e*e+n*n}manhattanDistanceTo(t){return Math.abs(this.x-t.x)+Math.abs(this.y-t.y)}setLength(t){return this.normalize().multiplyScalar(t)}lerp(t,e){return this.x+=(t.x-this.x)*e,this.y+=(t.y-this.y)*e,this}lerpVectors(t,e,n){return this.x=t.x+(e.x-t.x)*n,this.y=t.y+(e.y-t.y)*n,this}equals(t){return t.x===this.x&&t.y===this.y}fromArray(t,e=0){return this.x=t[e],this.y=t[e+1],this}toArray(t=[],e=0){return t[e]=this.x,t[e+1]=this.y,t}fromBufferAttribute(t,e){return this.x=t.getX(e),this.y=t.getY(e),this}rotateAround(t,e){const n=Math.cos(e),i=Math.sin(e),r=this.x-t.x,s=this.y-t.y;return this.x=r*n-s*i+t.x,this.y=r*i+s*n+t.y,this}random(){return this.x=Math.random(),this.y=Math.random(),this}*[Symbol.iterator](){yield this.x,yield this.y}}class ei{constructor(t,e,n,i,r,s,a,o,l){ei.prototype.isMatrix3=!0,this.elements=[1,0,0,0,1,0,0,0,1],void 0!==t&&this.set(t,e,n,i,r,s,a,o,l)}set(t,e,n,i,r,s,a,o,l){const c=this.elements;return c[0]=t,c[1]=i,c[2]=a,c[3]=e,c[4]=r,c[5]=o,c[6]=n,c[7]=s,c[8]=l,this}identity(){return this.set(1,0,0,0,1,0,0,0,1),this}copy(t){const e=this.elements,n=t.elements;return e[0]=n[0],e[1]=n[1],e[2]=n[2],e[3]=n[3],e[4]=n[4],e[5]=n[5],e[6]=n[6],e[7]=n[7],e[8]=n[8],this}extractBasis(t,e,n){return t.setFromMatrix3Column(this,0),e.setFromMatrix3Column(this,1),n.setFromMatrix3Column(this,2),this}setFromMatrix4(t){const e=t.elements;return this.set(e[0],e[4],e[8],e[1],e[5],e[9],e[2],e[6],e[10]),this}multiply(t){return this.multiplyMatrices(this,t)}premultiply(t){return this.multiplyMatrices(t,this)}multiplyMatrices(t,e){const n=t.elements,i=e.elements,r=this.elements,s=n[0],a=n[3],o=n[6],l=n[1],c=n[4],h=n[7],u=n[2],d=n[5],p=n[8],m=i[0],f=i[3],g=i[6],v=i[1],_=i[4],x=i[7],y=i[2],M=i[5],S=i[8];return r[0]=s*m+a*v+o*y,r[3]=s*f+a*_+o*M,r[6]=s*g+a*x+o*S,r[1]=l*m+c*v+h*y,r[4]=l*f+c*_+h*M,r[7]=l*g+c*x+h*S,r[2]=u*m+d*v+p*y,r[5]=u*f+d*_+p*M,r[8]=u*g+d*x+p*S,this}multiplyScalar(t){const e=this.elements;return e[0]*=t,e[3]*=t,e[6]*=t,e[1]*=t,e[4]*=t,e[7]*=t,e[2]*=t,e[5]*=t,e[8]*=t,this}determinant(){const t=this.elements,e=t[0],n=t[1],i=t[2],r=t[3],s=t[4],a=t[5],o=t[6],l=t[7],c=t[8];return e*s*c-e*a*l-n*r*c+n*a*o+i*r*l-i*s*o}invert(){const t=this.elements,e=t[0],n=t[1],i=t[2],r=t[3],s=t[4],a=t[5],o=t[6],l=t[7],c=t[8],h=c*s-a*l,u=a*o-c*r,d=l*r-s*o,p=e*h+n*u+i*d;if(0===p)return this.set(0,0,0,0,0,0,0,0,0);const m=1/p;return t[0]=h*m,t[1]=(i*l-c*n)*m,t[2]=(a*n-i*s)*m,t[3]=u*m,t[4]=(c*e-i*o)*m,t[5]=(i*r-a*e)*m,t[6]=d*m,t[7]=(n*o-l*e)*m,t[8]=(s*e-n*r)*m,this}transpose(){let t;const e=this.elements;return t=e[1],e[1]=e[3],e[3]=t,t=e[2],e[2]=e[6],e[6]=t,t=e[5],e[5]=e[7],e[7]=t,this}getNormalMatrix(t){return this.setFromMatrix4(t).invert().transpose()}transposeIntoArray(t){const e=this.elements;return t[0]=e[0],t[1]=e[3],t[2]=e[6],t[3]=e[1],t[4]=e[4],t[5]=e[7],t[6]=e[2],t[7]=e[5],t[8]=e[8],this}setUvTransform(t,e,n,i,r,s,a){const o=Math.cos(r),l=Math.sin(r);return this.set(n*o,n*l,-n*(o*s+l*a)+s+t,-i*l,i*o,-i*(-l*s+o*a)+a+e,0,0,1),this}scale(t,e){return this.premultiply(ni.makeScale(t,e)),this}rotate(t){return this.premultiply(ni.makeRotation(-t)),this}translate(t,e){return this.premultiply(ni.makeTranslation(t,e)),this}makeTranslation(t,e){return t.isVector2?this.set(1,0,t.x,0,1,t.y,0,0,1):this.set(1,0,t,0,1,e,0,0,1),this}makeRotation(t){const e=Math.cos(t),n=Math.sin(t);return this.set(e,-n,0,n,e,0,0,0,1),this}makeScale(t,e){return this.set(t,0,0,0,e,0,0,0,1),this}equals(t){const e=this.elements,n=t.elements;for(let t=0;t<9;t++)if(e[t]!==n[t])return!1;return!0}fromArray(t,e=0){for(let n=0;n<9;n++)this.elements[n]=t[n+e];return this}toArray(t=[],e=0){const n=this.elements;return t[e]=n[0],t[e+1]=n[1],t[e+2]=n[2],t[e+3]=n[3],t[e+4]=n[4],t[e+5]=n[5],t[e+6]=n[6],t[e+7]=n[7],t[e+8]=n[8],t}clone(){return(new this.constructor).fromArray(this.elements)}}const ni=new ei;function ii(t){for(let e=t.length-1;e>=0;--e)if(t[e]>=65535)return!0;return!1}const ri={Int8Array:Int8Array,Uint8Array:Uint8Array,Uint8ClampedArray:Uint8ClampedArray,Int16Array:Int16Array,Uint16Array:Uint16Array,Int32Array:Int32Array,Uint32Array:Uint32Array,Float32Array:Float32Array,Float64Array:Float64Array};function si(t,e){return new ri[t](e)}function ai(t){return document.createElementNS("http://www.w3.org/1999/xhtml",t)}function oi(){const t=ai("canvas");return t.style.display="block",t}const li={};function ci(t){t in li||(li[t]=!0,console.warn(t))}const hi=(new ei).set(.8224621,.177538,0,.0331941,.9668058,0,.0170827,.0723974,.9105199),ui=(new ei).set(1.2249401,-.2249404,0,-.0420569,1.0420571,0,-.0196376,-.0786361,1.0982735),di={[Ke]:{transfer:tn,primaries:nn,luminanceCoefficients:[.2126,.7152,.0722],toReference:t=>t,fromReference:t=>t},[Je]:{transfer:en,primaries:nn,luminanceCoefficients:[.2126,.7152,.0722],toReference:t=>t.convertSRGBToLinear(),fromReference:t=>t.convertLinearToSRGB()},[Qe]:{transfer:tn,primaries:rn,luminanceCoefficients:[.2289,.6917,.0793],toReference:t=>t.applyMatrix3(ui),fromReference:t=>t.applyMatrix3(hi)},[$e]:{transfer:en,primaries:rn,luminanceCoefficients:[.2289,.6917,.0793],toReference:t=>t.convertSRGBToLinear().applyMatrix3(ui),fromReference:t=>t.applyMatrix3(hi).convertLinearToSRGB()}},pi=new Set([Ke,Qe]),mi={enabled:!0,_workingColorSpace:Ke,get workingColorSpace(){return this._workingColorSpace},set workingColorSpace(t){if(!pi.has(t))throw new Error(`Unsupported working color space, "${t}".`);this._workingColorSpace=t},convert:function(t,e,n){if(!1===this.enabled||e===n||!e||!n)return t;const i=di[e].toReference;return(0,di[n].fromReference)(i(t))},fromWorkingColorSpace:function(t,e){return this.convert(t,this._workingColorSpace,e)},toWorkingColorSpace:function(t,e){return this.convert(t,e,this._workingColorSpace)},getPrimaries:function(t){return di[t].primaries},getTransfer:function(t){return t===Ze?tn:di[t].transfer},getLuminanceCoefficients:function(t,e=this._workingColorSpace){return t.fromArray(di[e].luminanceCoefficients)}};function fi(t){return t<.04045?.0773993808*t:Math.pow(.9478672986*t+.0521327014,2.4)}function gi(t){return t<.0031308?12.92*t:1.055*Math.pow(t,.41666)-.055}let vi;class _i{static getDataURL(t){if(/^data:/i.test(t.src))return t.src;if("undefined"==typeof HTMLCanvasElement)return t.src;let e;if(t instanceof HTMLCanvasElement)e=t;else{void 0===vi&&(vi=ai("canvas")),vi.width=t.width,vi.height=t.height;const n=vi.getContext("2d");t instanceof ImageData?n.putImageData(t,0,0):n.drawImage(t,0,0,t.width,t.height),e=vi}return e.width>2048||e.height>2048?(console.warn("THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons",t),e.toDataURL("image/jpeg",.6)):e.toDataURL("image/png")}static sRGBToLinear(t){if("undefined"!=typeof HTMLImageElement&&t instanceof HTMLImageElement||"undefined"!=typeof HTMLCanvasElement&&t instanceof HTMLCanvasElement||"undefined"!=typeof ImageBitmap&&t instanceof ImageBitmap){const e=ai("canvas");e.width=t.width,e.height=t.height;const n=e.getContext("2d");n.drawImage(t,0,0,t.width,t.height);const i=n.getImageData(0,0,t.width,t.height),r=i.data;for(let t=0;t0&&(n.userData=this.userData),e||(t.textures[this.uuid]=n),n}dispose(){this.dispatchEvent({type:"dispose"})}transformUv(t){if(this.mapping!==ot)return t;if(t.applyMatrix3(this.matrix),t.x<0||t.x>1)switch(this.wrapS){case pt:t.x=t.x-Math.floor(t.x);break;case mt:t.x=t.x<0?0:1;break;case ft:1===Math.abs(Math.floor(t.x)%2)?t.x=Math.ceil(t.x)-t.x:t.x=t.x-Math.floor(t.x)}if(t.y<0||t.y>1)switch(this.wrapT){case pt:t.y=t.y-Math.floor(t.y);break;case mt:t.y=t.y<0?0:1;break;case ft:1===Math.abs(Math.floor(t.y)%2)?t.y=Math.ceil(t.y)-t.y:t.y=t.y-Math.floor(t.y)}return this.flipY&&(t.y=1-t.y),t}set needsUpdate(t){!0===t&&(this.version++,this.source.needsUpdate=!0)}set needsPMREMUpdate(t){!0===t&&this.pmremVersion++}}bi.DEFAULT_IMAGE=null,bi.DEFAULT_MAPPING=ot,bi.DEFAULT_ANISOTROPY=1;class wi{constructor(t=0,e=0,n=0,i=1){wi.prototype.isVector4=!0,this.x=t,this.y=e,this.z=n,this.w=i}get width(){return this.z}set width(t){this.z=t}get height(){return this.w}set height(t){this.w=t}set(t,e,n,i){return this.x=t,this.y=e,this.z=n,this.w=i,this}setScalar(t){return this.x=t,this.y=t,this.z=t,this.w=t,this}setX(t){return this.x=t,this}setY(t){return this.y=t,this}setZ(t){return this.z=t,this}setW(t){return this.w=t,this}setComponent(t,e){switch(t){case 0:this.x=e;break;case 1:this.y=e;break;case 2:this.z=e;break;case 3:this.w=e;break;default:throw new Error("index is out of range: "+t)}return this}getComponent(t){switch(t){case 0:return this.x;case 1:return this.y;case 2:return this.z;case 3:return this.w;default:throw new Error("index is out of range: "+t)}}clone(){return new this.constructor(this.x,this.y,this.z,this.w)}copy(t){return this.x=t.x,this.y=t.y,this.z=t.z,this.w=void 0!==t.w?t.w:1,this}add(t){return this.x+=t.x,this.y+=t.y,this.z+=t.z,this.w+=t.w,this}addScalar(t){return this.x+=t,this.y+=t,this.z+=t,this.w+=t,this}addVectors(t,e){return this.x=t.x+e.x,this.y=t.y+e.y,this.z=t.z+e.z,this.w=t.w+e.w,this}addScaledVector(t,e){return this.x+=t.x*e,this.y+=t.y*e,this.z+=t.z*e,this.w+=t.w*e,this}sub(t){return this.x-=t.x,this.y-=t.y,this.z-=t.z,this.w-=t.w,this}subScalar(t){return this.x-=t,this.y-=t,this.z-=t,this.w-=t,this}subVectors(t,e){return this.x=t.x-e.x,this.y=t.y-e.y,this.z=t.z-e.z,this.w=t.w-e.w,this}multiply(t){return this.x*=t.x,this.y*=t.y,this.z*=t.z,this.w*=t.w,this}multiplyScalar(t){return this.x*=t,this.y*=t,this.z*=t,this.w*=t,this}applyMatrix4(t){const e=this.x,n=this.y,i=this.z,r=this.w,s=t.elements;return this.x=s[0]*e+s[4]*n+s[8]*i+s[12]*r,this.y=s[1]*e+s[5]*n+s[9]*i+s[13]*r,this.z=s[2]*e+s[6]*n+s[10]*i+s[14]*r,this.w=s[3]*e+s[7]*n+s[11]*i+s[15]*r,this}divideScalar(t){return this.multiplyScalar(1/t)}setAxisAngleFromQuaternion(t){this.w=2*Math.acos(t.w);const e=Math.sqrt(1-t.w*t.w);return e<1e-4?(this.x=1,this.y=0,this.z=0):(this.x=t.x/e,this.y=t.y/e,this.z=t.z/e),this}setAxisAngleFromRotationMatrix(t){let e,n,i,r;const s=.01,a=.1,o=t.elements,l=o[0],c=o[4],h=o[8],u=o[1],d=o[5],p=o[9],m=o[2],f=o[6],g=o[10];if(Math.abs(c-u)o&&t>v?tv?o=0?1:-1,i=1-e*e;if(i>Number.EPSILON){const r=Math.sqrt(i),s=Math.atan2(r,e*n);t=Math.sin(t*s)/r,a=Math.sin(a*s)/r}const r=a*n;if(o=o*t+u*r,l=l*t+d*r,c=c*t+p*r,h=h*t+m*r,t===1-a){const t=1/Math.sqrt(o*o+l*l+c*c+h*h);o*=t,l*=t,c*=t,h*=t}}t[e]=o,t[e+1]=l,t[e+2]=c,t[e+3]=h}static multiplyQuaternionsFlat(t,e,n,i,r,s){const a=n[i],o=n[i+1],l=n[i+2],c=n[i+3],h=r[s],u=r[s+1],d=r[s+2],p=r[s+3];return t[e]=a*p+c*h+o*d-l*u,t[e+1]=o*p+c*u+l*h-a*d,t[e+2]=l*p+c*d+a*u-o*h,t[e+3]=c*p-a*h-o*u-l*d,t}get x(){return this._x}set x(t){this._x=t,this._onChangeCallback()}get y(){return this._y}set y(t){this._y=t,this._onChangeCallback()}get z(){return this._z}set z(t){this._z=t,this._onChangeCallback()}get w(){return this._w}set w(t){this._w=t,this._onChangeCallback()}set(t,e,n,i){return this._x=t,this._y=e,this._z=n,this._w=i,this._onChangeCallback(),this}clone(){return new this.constructor(this._x,this._y,this._z,this._w)}copy(t){return this._x=t.x,this._y=t.y,this._z=t.z,this._w=t.w,this._onChangeCallback(),this}setFromEuler(t,e=!0){const n=t._x,i=t._y,r=t._z,s=t._order,a=Math.cos,o=Math.sin,l=a(n/2),c=a(i/2),h=a(r/2),u=o(n/2),d=o(i/2),p=o(r/2);switch(s){case"XYZ":this._x=u*c*h+l*d*p,this._y=l*d*h-u*c*p,this._z=l*c*p+u*d*h,this._w=l*c*h-u*d*p;break;case"YXZ":this._x=u*c*h+l*d*p,this._y=l*d*h-u*c*p,this._z=l*c*p-u*d*h,this._w=l*c*h+u*d*p;break;case"ZXY":this._x=u*c*h-l*d*p,this._y=l*d*h+u*c*p,this._z=l*c*p+u*d*h,this._w=l*c*h-u*d*p;break;case"ZYX":this._x=u*c*h-l*d*p,this._y=l*d*h+u*c*p,this._z=l*c*p-u*d*h,this._w=l*c*h+u*d*p;break;case"YZX":this._x=u*c*h+l*d*p,this._y=l*d*h+u*c*p,this._z=l*c*p-u*d*h,this._w=l*c*h-u*d*p;break;case"XZY":this._x=u*c*h-l*d*p,this._y=l*d*h-u*c*p,this._z=l*c*p+u*d*h,this._w=l*c*h+u*d*p;break;default:console.warn("THREE.Quaternion: .setFromEuler() encountered an unknown order: "+s)}return!0===e&&this._onChangeCallback(),this}setFromAxisAngle(t,e){const n=e/2,i=Math.sin(n);return this._x=t.x*i,this._y=t.y*i,this._z=t.z*i,this._w=Math.cos(n),this._onChangeCallback(),this}setFromRotationMatrix(t){const e=t.elements,n=e[0],i=e[4],r=e[8],s=e[1],a=e[5],o=e[9],l=e[2],c=e[6],h=e[10],u=n+a+h;if(u>0){const t=.5/Math.sqrt(u+1);this._w=.25/t,this._x=(c-o)*t,this._y=(r-l)*t,this._z=(s-i)*t}else if(n>a&&n>h){const t=2*Math.sqrt(1+n-a-h);this._w=(c-o)/t,this._x=.25*t,this._y=(i+s)/t,this._z=(r+l)/t}else if(a>h){const t=2*Math.sqrt(1+a-n-h);this._w=(r-l)/t,this._x=(i+s)/t,this._y=.25*t,this._z=(o+c)/t}else{const t=2*Math.sqrt(1+h-n-a);this._w=(s-i)/t,this._x=(r+l)/t,this._y=(o+c)/t,this._z=.25*t}return this._onChangeCallback(),this}setFromUnitVectors(t,e){let n=t.dot(e)+1;return nMath.abs(t.z)?(this._x=-t.y,this._y=t.x,this._z=0,this._w=n):(this._x=0,this._y=-t.z,this._z=t.y,this._w=n)):(this._x=t.y*e.z-t.z*e.y,this._y=t.z*e.x-t.x*e.z,this._z=t.x*e.y-t.y*e.x,this._w=n),this.normalize()}angleTo(t){return 2*Math.acos(Math.abs(Yn(this.dot(t),-1,1)))}rotateTowards(t,e){const n=this.angleTo(t);if(0===n)return this;const i=Math.min(1,e/n);return this.slerp(t,i),this}identity(){return this.set(0,0,0,1)}invert(){return this.conjugate()}conjugate(){return this._x*=-1,this._y*=-1,this._z*=-1,this._onChangeCallback(),this}dot(t){return this._x*t._x+this._y*t._y+this._z*t._z+this._w*t._w}lengthSq(){return this._x*this._x+this._y*this._y+this._z*this._z+this._w*this._w}length(){return Math.sqrt(this._x*this._x+this._y*this._y+this._z*this._z+this._w*this._w)}normalize(){let t=this.length();return 0===t?(this._x=0,this._y=0,this._z=0,this._w=1):(t=1/t,this._x=this._x*t,this._y=this._y*t,this._z=this._z*t,this._w=this._w*t),this._onChangeCallback(),this}multiply(t){return this.multiplyQuaternions(this,t)}premultiply(t){return this.multiplyQuaternions(t,this)}multiplyQuaternions(t,e){const n=t._x,i=t._y,r=t._z,s=t._w,a=e._x,o=e._y,l=e._z,c=e._w;return this._x=n*c+s*a+i*l-r*o,this._y=i*c+s*o+r*a-n*l,this._z=r*c+s*l+n*o-i*a,this._w=s*c-n*a-i*o-r*l,this._onChangeCallback(),this}slerp(t,e){if(0===e)return this;if(1===e)return this.copy(t);const n=this._x,i=this._y,r=this._z,s=this._w;let a=s*t._w+n*t._x+i*t._y+r*t._z;if(a<0?(this._w=-t._w,this._x=-t._x,this._y=-t._y,this._z=-t._z,a=-a):this.copy(t),a>=1)return this._w=s,this._x=n,this._y=i,this._z=r,this;const o=1-a*a;if(o<=Number.EPSILON){const t=1-e;return this._w=t*s+e*this._w,this._x=t*n+e*this._x,this._y=t*i+e*this._y,this._z=t*r+e*this._z,this.normalize(),this}const l=Math.sqrt(o),c=Math.atan2(l,a),h=Math.sin((1-e)*c)/l,u=Math.sin(e*c)/l;return this._w=s*h+this._w*u,this._x=n*h+this._x*u,this._y=i*h+this._y*u,this._z=r*h+this._z*u,this._onChangeCallback(),this}slerpQuaternions(t,e,n){return this.copy(t).slerp(e,n)}random(){const t=2*Math.PI*Math.random(),e=2*Math.PI*Math.random(),n=Math.random(),i=Math.sqrt(1-n),r=Math.sqrt(n);return this.set(i*Math.sin(t),i*Math.cos(t),r*Math.sin(e),r*Math.cos(e))}equals(t){return t._x===this._x&&t._y===this._y&&t._z===this._z&&t._w===this._w}fromArray(t,e=0){return this._x=t[e],this._y=t[e+1],this._z=t[e+2],this._w=t[e+3],this._onChangeCallback(),this}toArray(t=[],e=0){return t[e]=this._x,t[e+1]=this._y,t[e+2]=this._z,t[e+3]=this._w,t}fromBufferAttribute(t,e){return this._x=t.getX(e),this._y=t.getY(e),this._z=t.getZ(e),this._w=t.getW(e),this._onChangeCallback(),this}toJSON(){return this.toArray()}_onChange(t){return this._onChangeCallback=t,this}_onChangeCallback(){}*[Symbol.iterator](){yield this._x,yield this._y,yield this._z,yield this._w}}class Li{constructor(t=0,e=0,n=0){Li.prototype.isVector3=!0,this.x=t,this.y=e,this.z=n}set(t,e,n){return void 0===n&&(n=this.z),this.x=t,this.y=e,this.z=n,this}setScalar(t){return this.x=t,this.y=t,this.z=t,this}setX(t){return this.x=t,this}setY(t){return this.y=t,this}setZ(t){return this.z=t,this}setComponent(t,e){switch(t){case 0:this.x=e;break;case 1:this.y=e;break;case 2:this.z=e;break;default:throw new Error("index is out of range: "+t)}return this}getComponent(t){switch(t){case 0:return this.x;case 1:return this.y;case 2:return this.z;default:throw new Error("index is out of range: "+t)}}clone(){return new this.constructor(this.x,this.y,this.z)}copy(t){return this.x=t.x,this.y=t.y,this.z=t.z,this}add(t){return this.x+=t.x,this.y+=t.y,this.z+=t.z,this}addScalar(t){return this.x+=t,this.y+=t,this.z+=t,this}addVectors(t,e){return this.x=t.x+e.x,this.y=t.y+e.y,this.z=t.z+e.z,this}addScaledVector(t,e){return this.x+=t.x*e,this.y+=t.y*e,this.z+=t.z*e,this}sub(t){return this.x-=t.x,this.y-=t.y,this.z-=t.z,this}subScalar(t){return this.x-=t,this.y-=t,this.z-=t,this}subVectors(t,e){return this.x=t.x-e.x,this.y=t.y-e.y,this.z=t.z-e.z,this}multiply(t){return this.x*=t.x,this.y*=t.y,this.z*=t.z,this}multiplyScalar(t){return this.x*=t,this.y*=t,this.z*=t,this}multiplyVectors(t,e){return this.x=t.x*e.x,this.y=t.y*e.y,this.z=t.z*e.z,this}applyEuler(t){return this.applyQuaternion(Ni.setFromEuler(t))}applyAxisAngle(t,e){return this.applyQuaternion(Ni.setFromAxisAngle(t,e))}applyMatrix3(t){const e=this.x,n=this.y,i=this.z,r=t.elements;return this.x=r[0]*e+r[3]*n+r[6]*i,this.y=r[1]*e+r[4]*n+r[7]*i,this.z=r[2]*e+r[5]*n+r[8]*i,this}applyNormalMatrix(t){return this.applyMatrix3(t).normalize()}applyMatrix4(t){const e=this.x,n=this.y,i=this.z,r=t.elements,s=1/(r[3]*e+r[7]*n+r[11]*i+r[15]);return this.x=(r[0]*e+r[4]*n+r[8]*i+r[12])*s,this.y=(r[1]*e+r[5]*n+r[9]*i+r[13])*s,this.z=(r[2]*e+r[6]*n+r[10]*i+r[14])*s,this}applyQuaternion(t){const e=this.x,n=this.y,i=this.z,r=t.x,s=t.y,a=t.z,o=t.w,l=2*(s*i-a*n),c=2*(a*e-r*i),h=2*(r*n-s*e);return this.x=e+o*l+s*h-a*c,this.y=n+o*c+a*l-r*h,this.z=i+o*h+r*c-s*l,this}project(t){return this.applyMatrix4(t.matrixWorldInverse).applyMatrix4(t.projectionMatrix)}unproject(t){return this.applyMatrix4(t.projectionMatrixInverse).applyMatrix4(t.matrixWorld)}transformDirection(t){const e=this.x,n=this.y,i=this.z,r=t.elements;return this.x=r[0]*e+r[4]*n+r[8]*i,this.y=r[1]*e+r[5]*n+r[9]*i,this.z=r[2]*e+r[6]*n+r[10]*i,this.normalize()}divide(t){return this.x/=t.x,this.y/=t.y,this.z/=t.z,this}divideScalar(t){return this.multiplyScalar(1/t)}min(t){return this.x=Math.min(this.x,t.x),this.y=Math.min(this.y,t.y),this.z=Math.min(this.z,t.z),this}max(t){return this.x=Math.max(this.x,t.x),this.y=Math.max(this.y,t.y),this.z=Math.max(this.z,t.z),this}clamp(t,e){return this.x=Math.max(t.x,Math.min(e.x,this.x)),this.y=Math.max(t.y,Math.min(e.y,this.y)),this.z=Math.max(t.z,Math.min(e.z,this.z)),this}clampScalar(t,e){return this.x=Math.max(t,Math.min(e,this.x)),this.y=Math.max(t,Math.min(e,this.y)),this.z=Math.max(t,Math.min(e,this.z)),this}clampLength(t,e){const n=this.length();return this.divideScalar(n||1).multiplyScalar(Math.max(t,Math.min(e,n)))}floor(){return this.x=Math.floor(this.x),this.y=Math.floor(this.y),this.z=Math.floor(this.z),this}ceil(){return this.x=Math.ceil(this.x),this.y=Math.ceil(this.y),this.z=Math.ceil(this.z),this}round(){return this.x=Math.round(this.x),this.y=Math.round(this.y),this.z=Math.round(this.z),this}roundToZero(){return this.x=Math.trunc(this.x),this.y=Math.trunc(this.y),this.z=Math.trunc(this.z),this}negate(){return this.x=-this.x,this.y=-this.y,this.z=-this.z,this}dot(t){return this.x*t.x+this.y*t.y+this.z*t.z}lengthSq(){return this.x*this.x+this.y*this.y+this.z*this.z}length(){return Math.sqrt(this.x*this.x+this.y*this.y+this.z*this.z)}manhattanLength(){return Math.abs(this.x)+Math.abs(this.y)+Math.abs(this.z)}normalize(){return this.divideScalar(this.length()||1)}setLength(t){return this.normalize().multiplyScalar(t)}lerp(t,e){return this.x+=(t.x-this.x)*e,this.y+=(t.y-this.y)*e,this.z+=(t.z-this.z)*e,this}lerpVectors(t,e,n){return this.x=t.x+(e.x-t.x)*n,this.y=t.y+(e.y-t.y)*n,this.z=t.z+(e.z-t.z)*n,this}cross(t){return this.crossVectors(this,t)}crossVectors(t,e){const n=t.x,i=t.y,r=t.z,s=e.x,a=e.y,o=e.z;return this.x=i*o-r*a,this.y=r*s-n*o,this.z=n*a-i*s,this}projectOnVector(t){const e=t.lengthSq();if(0===e)return this.set(0,0,0);const n=t.dot(this)/e;return this.copy(t).multiplyScalar(n)}projectOnPlane(t){return Ui.copy(this).projectOnVector(t),this.sub(Ui)}reflect(t){return this.sub(Ui.copy(t).multiplyScalar(2*this.dot(t)))}angleTo(t){const e=Math.sqrt(this.lengthSq()*t.lengthSq());if(0===e)return Math.PI/2;const n=this.dot(t)/e;return Math.acos(Yn(n,-1,1))}distanceTo(t){return Math.sqrt(this.distanceToSquared(t))}distanceToSquared(t){const e=this.x-t.x,n=this.y-t.y,i=this.z-t.z;return e*e+n*n+i*i}manhattanDistanceTo(t){return Math.abs(this.x-t.x)+Math.abs(this.y-t.y)+Math.abs(this.z-t.z)}setFromSpherical(t){return this.setFromSphericalCoords(t.radius,t.phi,t.theta)}setFromSphericalCoords(t,e,n){const i=Math.sin(e)*t;return this.x=i*Math.sin(n),this.y=Math.cos(e)*t,this.z=i*Math.cos(n),this}setFromCylindrical(t){return this.setFromCylindricalCoords(t.radius,t.theta,t.y)}setFromCylindricalCoords(t,e,n){return this.x=t*Math.sin(e),this.y=n,this.z=t*Math.cos(e),this}setFromMatrixPosition(t){const e=t.elements;return this.x=e[12],this.y=e[13],this.z=e[14],this}setFromMatrixScale(t){const e=this.setFromMatrixColumn(t,0).length(),n=this.setFromMatrixColumn(t,1).length(),i=this.setFromMatrixColumn(t,2).length();return this.x=e,this.y=n,this.z=i,this}setFromMatrixColumn(t,e){return this.fromArray(t.elements,4*e)}setFromMatrix3Column(t,e){return this.fromArray(t.elements,3*e)}setFromEuler(t){return this.x=t._x,this.y=t._y,this.z=t._z,this}setFromColor(t){return this.x=t.r,this.y=t.g,this.z=t.b,this}equals(t){return t.x===this.x&&t.y===this.y&&t.z===this.z}fromArray(t,e=0){return this.x=t[e],this.y=t[e+1],this.z=t[e+2],this}toArray(t=[],e=0){return t[e]=this.x,t[e+1]=this.y,t[e+2]=this.z,t}fromBufferAttribute(t,e){return this.x=t.getX(e),this.y=t.getY(e),this.z=t.getZ(e),this}random(){return this.x=Math.random(),this.y=Math.random(),this.z=Math.random(),this}randomDirection(){const t=Math.random()*Math.PI*2,e=2*Math.random()-1,n=Math.sqrt(1-e*e);return this.x=n*Math.cos(t),this.y=e,this.z=n*Math.sin(t),this}*[Symbol.iterator](){yield this.x,yield this.y,yield this.z}}const Ui=new Li,Ni=new Ii;class Di{constructor(t=new Li(1/0,1/0,1/0),e=new Li(-1/0,-1/0,-1/0)){this.isBox3=!0,this.min=t,this.max=e}set(t,e){return this.min.copy(t),this.max.copy(e),this}setFromArray(t){this.makeEmpty();for(let e=0,n=t.length;e=this.min.x&&t.x<=this.max.x&&t.y>=this.min.y&&t.y<=this.max.y&&t.z>=this.min.z&&t.z<=this.max.z}containsBox(t){return this.min.x<=t.min.x&&t.max.x<=this.max.x&&this.min.y<=t.min.y&&t.max.y<=this.max.y&&this.min.z<=t.min.z&&t.max.z<=this.max.z}getParameter(t,e){return e.set((t.x-this.min.x)/(this.max.x-this.min.x),(t.y-this.min.y)/(this.max.y-this.min.y),(t.z-this.min.z)/(this.max.z-this.min.z))}intersectsBox(t){return t.max.x>=this.min.x&&t.min.x<=this.max.x&&t.max.y>=this.min.y&&t.min.y<=this.max.y&&t.max.z>=this.min.z&&t.min.z<=this.max.z}intersectsSphere(t){return this.clampPoint(t.center,Fi),Fi.distanceToSquared(t.center)<=t.radius*t.radius}intersectsPlane(t){let e,n;return t.normal.x>0?(e=t.normal.x*this.min.x,n=t.normal.x*this.max.x):(e=t.normal.x*this.max.x,n=t.normal.x*this.min.x),t.normal.y>0?(e+=t.normal.y*this.min.y,n+=t.normal.y*this.max.y):(e+=t.normal.y*this.max.y,n+=t.normal.y*this.min.y),t.normal.z>0?(e+=t.normal.z*this.min.z,n+=t.normal.z*this.max.z):(e+=t.normal.z*this.max.z,n+=t.normal.z*this.min.z),e<=-t.constant&&n>=-t.constant}intersectsTriangle(t){if(this.isEmpty())return!1;this.getCenter(Xi),ji.subVectors(this.max,Xi),zi.subVectors(t.a,Xi),ki.subVectors(t.b,Xi),Vi.subVectors(t.c,Xi),Hi.subVectors(ki,zi),Gi.subVectors(Vi,ki),Wi.subVectors(zi,Vi);let e=[0,-Hi.z,Hi.y,0,-Gi.z,Gi.y,0,-Wi.z,Wi.y,Hi.z,0,-Hi.x,Gi.z,0,-Gi.x,Wi.z,0,-Wi.x,-Hi.y,Hi.x,0,-Gi.y,Gi.x,0,-Wi.y,Wi.x,0];return!!Zi(e,zi,ki,Vi,ji)&&(e=[1,0,0,0,1,0,0,0,1],!!Zi(e,zi,ki,Vi,ji)&&(qi.crossVectors(Hi,Gi),e=[qi.x,qi.y,qi.z],Zi(e,zi,ki,Vi,ji)))}clampPoint(t,e){return e.copy(t).clamp(this.min,this.max)}distanceToPoint(t){return this.clampPoint(t,Fi).distanceTo(t)}getBoundingSphere(t){return this.isEmpty()?t.makeEmpty():(this.getCenter(t.center),t.radius=.5*this.getSize(Fi).length()),t}intersect(t){return this.min.max(t.min),this.max.min(t.max),this.isEmpty()&&this.makeEmpty(),this}union(t){return this.min.min(t.min),this.max.max(t.max),this}applyMatrix4(t){return this.isEmpty()||(Oi[0].set(this.min.x,this.min.y,this.min.z).applyMatrix4(t),Oi[1].set(this.min.x,this.min.y,this.max.z).applyMatrix4(t),Oi[2].set(this.min.x,this.max.y,this.min.z).applyMatrix4(t),Oi[3].set(this.min.x,this.max.y,this.max.z).applyMatrix4(t),Oi[4].set(this.max.x,this.min.y,this.min.z).applyMatrix4(t),Oi[5].set(this.max.x,this.min.y,this.max.z).applyMatrix4(t),Oi[6].set(this.max.x,this.max.y,this.min.z).applyMatrix4(t),Oi[7].set(this.max.x,this.max.y,this.max.z).applyMatrix4(t),this.setFromPoints(Oi)),this}translate(t){return this.min.add(t),this.max.add(t),this}equals(t){return t.min.equals(this.min)&&t.max.equals(this.max)}}const Oi=[new Li,new Li,new Li,new Li,new Li,new Li,new Li,new Li],Fi=new Li,Bi=new Di,zi=new Li,ki=new Li,Vi=new Li,Hi=new Li,Gi=new Li,Wi=new Li,Xi=new Li,ji=new Li,qi=new Li,Yi=new Li;function Zi(t,e,n,i,r){for(let s=0,a=t.length-3;s<=a;s+=3){Yi.fromArray(t,s);const a=r.x*Math.abs(Yi.x)+r.y*Math.abs(Yi.y)+r.z*Math.abs(Yi.z),o=e.dot(Yi),l=n.dot(Yi),c=i.dot(Yi);if(Math.max(-Math.max(o,l,c),Math.min(o,l,c))>a)return!1}return!0}const Ji=new Di,Ki=new Li,$i=new Li;class Qi{constructor(t=new Li,e=-1){this.isSphere=!0,this.center=t,this.radius=e}set(t,e){return this.center.copy(t),this.radius=e,this}setFromPoints(t,e){const n=this.center;void 0!==e?n.copy(e):Ji.setFromPoints(t).getCenter(n);let i=0;for(let e=0,r=t.length;ethis.radius*this.radius&&(e.sub(this.center).normalize(),e.multiplyScalar(this.radius).add(this.center)),e}getBoundingBox(t){return this.isEmpty()?(t.makeEmpty(),t):(t.set(this.center,this.center),t.expandByScalar(this.radius),t)}applyMatrix4(t){return this.center.applyMatrix4(t),this.radius=this.radius*t.getMaxScaleOnAxis(),this}translate(t){return this.center.add(t),this}expandByPoint(t){if(this.isEmpty())return this.center.copy(t),this.radius=0,this;Ki.subVectors(t,this.center);const e=Ki.lengthSq();if(e>this.radius*this.radius){const t=Math.sqrt(e),n=.5*(t-this.radius);this.center.addScaledVector(Ki,n/t),this.radius+=n}return this}union(t){return t.isEmpty()?this:this.isEmpty()?(this.copy(t),this):(!0===this.center.equals(t.center)?this.radius=Math.max(this.radius,t.radius):($i.subVectors(t.center,this.center).setLength(t.radius),this.expandByPoint(Ki.copy(t.center).add($i)),this.expandByPoint(Ki.copy(t.center).sub($i))),this)}equals(t){return t.center.equals(this.center)&&t.radius===this.radius}clone(){return(new this.constructor).copy(this)}}const tr=new Li,er=new Li,nr=new Li,ir=new Li,rr=new Li,sr=new Li,ar=new Li;class or{constructor(t=new Li,e=new Li(0,0,-1)){this.origin=t,this.direction=e}set(t,e){return this.origin.copy(t),this.direction.copy(e),this}copy(t){return this.origin.copy(t.origin),this.direction.copy(t.direction),this}at(t,e){return e.copy(this.origin).addScaledVector(this.direction,t)}lookAt(t){return this.direction.copy(t).sub(this.origin).normalize(),this}recast(t){return this.origin.copy(this.at(t,tr)),this}closestPointToPoint(t,e){e.subVectors(t,this.origin);const n=e.dot(this.direction);return n<0?e.copy(this.origin):e.copy(this.origin).addScaledVector(this.direction,n)}distanceToPoint(t){return Math.sqrt(this.distanceSqToPoint(t))}distanceSqToPoint(t){const e=tr.subVectors(t,this.origin).dot(this.direction);return e<0?this.origin.distanceToSquared(t):(tr.copy(this.origin).addScaledVector(this.direction,e),tr.distanceToSquared(t))}distanceSqToSegment(t,e,n,i){er.copy(t).add(e).multiplyScalar(.5),nr.copy(e).sub(t).normalize(),ir.copy(this.origin).sub(er);const r=.5*t.distanceTo(e),s=-this.direction.dot(nr),a=ir.dot(this.direction),o=-ir.dot(nr),l=ir.lengthSq(),c=Math.abs(1-s*s);let h,u,d,p;if(c>0)if(h=s*o-a,u=s*a-o,p=r*c,h>=0)if(u>=-p)if(u<=p){const t=1/c;h*=t,u*=t,d=h*(h+s*u+2*a)+u*(s*h+u+2*o)+l}else u=r,h=Math.max(0,-(s*u+a)),d=-h*h+u*(u+2*o)+l;else u=-r,h=Math.max(0,-(s*u+a)),d=-h*h+u*(u+2*o)+l;else u<=-p?(h=Math.max(0,-(-s*r+a)),u=h>0?-r:Math.min(Math.max(-r,-o),r),d=-h*h+u*(u+2*o)+l):u<=p?(h=0,u=Math.min(Math.max(-r,-o),r),d=u*(u+2*o)+l):(h=Math.max(0,-(s*r+a)),u=h>0?r:Math.min(Math.max(-r,-o),r),d=-h*h+u*(u+2*o)+l);else u=s>0?-r:r,h=Math.max(0,-(s*u+a)),d=-h*h+u*(u+2*o)+l;return n&&n.copy(this.origin).addScaledVector(this.direction,h),i&&i.copy(er).addScaledVector(nr,u),d}intersectSphere(t,e){tr.subVectors(t.center,this.origin);const n=tr.dot(this.direction),i=tr.dot(tr)-n*n,r=t.radius*t.radius;if(i>r)return null;const s=Math.sqrt(r-i),a=n-s,o=n+s;return o<0?null:a<0?this.at(o,e):this.at(a,e)}intersectsSphere(t){return this.distanceSqToPoint(t.center)<=t.radius*t.radius}distanceToPlane(t){const e=t.normal.dot(this.direction);if(0===e)return 0===t.distanceToPoint(this.origin)?0:null;const n=-(this.origin.dot(t.normal)+t.constant)/e;return n>=0?n:null}intersectPlane(t,e){const n=this.distanceToPlane(t);return null===n?null:this.at(n,e)}intersectsPlane(t){const e=t.distanceToPoint(this.origin);if(0===e)return!0;return t.normal.dot(this.direction)*e<0}intersectBox(t,e){let n,i,r,s,a,o;const l=1/this.direction.x,c=1/this.direction.y,h=1/this.direction.z,u=this.origin;return l>=0?(n=(t.min.x-u.x)*l,i=(t.max.x-u.x)*l):(n=(t.max.x-u.x)*l,i=(t.min.x-u.x)*l),c>=0?(r=(t.min.y-u.y)*c,s=(t.max.y-u.y)*c):(r=(t.max.y-u.y)*c,s=(t.min.y-u.y)*c),n>s||r>i?null:((r>n||isNaN(n))&&(n=r),(s=0?(a=(t.min.z-u.z)*h,o=(t.max.z-u.z)*h):(a=(t.max.z-u.z)*h,o=(t.min.z-u.z)*h),n>o||a>i?null:((a>n||n!=n)&&(n=a),(o=0?n:i,e)))}intersectsBox(t){return null!==this.intersectBox(t,tr)}intersectTriangle(t,e,n,i,r){rr.subVectors(e,t),sr.subVectors(n,t),ar.crossVectors(rr,sr);let s,a=this.direction.dot(ar);if(a>0){if(i)return null;s=1}else{if(!(a<0))return null;s=-1,a=-a}ir.subVectors(this.origin,t);const o=s*this.direction.dot(sr.crossVectors(ir,sr));if(o<0)return null;const l=s*this.direction.dot(rr.cross(ir));if(l<0)return null;if(o+l>a)return null;const c=-s*ir.dot(ar);return c<0?null:this.at(c/a,r)}applyMatrix4(t){return this.origin.applyMatrix4(t),this.direction.transformDirection(t),this}equals(t){return t.origin.equals(this.origin)&&t.direction.equals(this.direction)}clone(){return(new this.constructor).copy(this)}}class lr{constructor(t,e,n,i,r,s,a,o,l,c,h,u,d,p,m,f){lr.prototype.isMatrix4=!0,this.elements=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],void 0!==t&&this.set(t,e,n,i,r,s,a,o,l,c,h,u,d,p,m,f)}set(t,e,n,i,r,s,a,o,l,c,h,u,d,p,m,f){const g=this.elements;return g[0]=t,g[4]=e,g[8]=n,g[12]=i,g[1]=r,g[5]=s,g[9]=a,g[13]=o,g[2]=l,g[6]=c,g[10]=h,g[14]=u,g[3]=d,g[7]=p,g[11]=m,g[15]=f,this}identity(){return this.set(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),this}clone(){return(new lr).fromArray(this.elements)}copy(t){const e=this.elements,n=t.elements;return e[0]=n[0],e[1]=n[1],e[2]=n[2],e[3]=n[3],e[4]=n[4],e[5]=n[5],e[6]=n[6],e[7]=n[7],e[8]=n[8],e[9]=n[9],e[10]=n[10],e[11]=n[11],e[12]=n[12],e[13]=n[13],e[14]=n[14],e[15]=n[15],this}copyPosition(t){const e=this.elements,n=t.elements;return e[12]=n[12],e[13]=n[13],e[14]=n[14],this}setFromMatrix3(t){const e=t.elements;return this.set(e[0],e[3],e[6],0,e[1],e[4],e[7],0,e[2],e[5],e[8],0,0,0,0,1),this}extractBasis(t,e,n){return t.setFromMatrixColumn(this,0),e.setFromMatrixColumn(this,1),n.setFromMatrixColumn(this,2),this}makeBasis(t,e,n){return this.set(t.x,e.x,n.x,0,t.y,e.y,n.y,0,t.z,e.z,n.z,0,0,0,0,1),this}extractRotation(t){const e=this.elements,n=t.elements,i=1/cr.setFromMatrixColumn(t,0).length(),r=1/cr.setFromMatrixColumn(t,1).length(),s=1/cr.setFromMatrixColumn(t,2).length();return e[0]=n[0]*i,e[1]=n[1]*i,e[2]=n[2]*i,e[3]=0,e[4]=n[4]*r,e[5]=n[5]*r,e[6]=n[6]*r,e[7]=0,e[8]=n[8]*s,e[9]=n[9]*s,e[10]=n[10]*s,e[11]=0,e[12]=0,e[13]=0,e[14]=0,e[15]=1,this}makeRotationFromEuler(t){const e=this.elements,n=t.x,i=t.y,r=t.z,s=Math.cos(n),a=Math.sin(n),o=Math.cos(i),l=Math.sin(i),c=Math.cos(r),h=Math.sin(r);if("XYZ"===t.order){const t=s*c,n=s*h,i=a*c,r=a*h;e[0]=o*c,e[4]=-o*h,e[8]=l,e[1]=n+i*l,e[5]=t-r*l,e[9]=-a*o,e[2]=r-t*l,e[6]=i+n*l,e[10]=s*o}else if("YXZ"===t.order){const t=o*c,n=o*h,i=l*c,r=l*h;e[0]=t+r*a,e[4]=i*a-n,e[8]=s*l,e[1]=s*h,e[5]=s*c,e[9]=-a,e[2]=n*a-i,e[6]=r+t*a,e[10]=s*o}else if("ZXY"===t.order){const t=o*c,n=o*h,i=l*c,r=l*h;e[0]=t-r*a,e[4]=-s*h,e[8]=i+n*a,e[1]=n+i*a,e[5]=s*c,e[9]=r-t*a,e[2]=-s*l,e[6]=a,e[10]=s*o}else if("ZYX"===t.order){const t=s*c,n=s*h,i=a*c,r=a*h;e[0]=o*c,e[4]=i*l-n,e[8]=t*l+r,e[1]=o*h,e[5]=r*l+t,e[9]=n*l-i,e[2]=-l,e[6]=a*o,e[10]=s*o}else if("YZX"===t.order){const t=s*o,n=s*l,i=a*o,r=a*l;e[0]=o*c,e[4]=r-t*h,e[8]=i*h+n,e[1]=h,e[5]=s*c,e[9]=-a*c,e[2]=-l*c,e[6]=n*h+i,e[10]=t-r*h}else if("XZY"===t.order){const t=s*o,n=s*l,i=a*o,r=a*l;e[0]=o*c,e[4]=-h,e[8]=l*c,e[1]=t*h+r,e[5]=s*c,e[9]=n*h-i,e[2]=i*h-n,e[6]=a*c,e[10]=r*h+t}return e[3]=0,e[7]=0,e[11]=0,e[12]=0,e[13]=0,e[14]=0,e[15]=1,this}makeRotationFromQuaternion(t){return this.compose(ur,t,dr)}lookAt(t,e,n){const i=this.elements;return fr.subVectors(t,e),0===fr.lengthSq()&&(fr.z=1),fr.normalize(),pr.crossVectors(n,fr),0===pr.lengthSq()&&(1===Math.abs(n.z)?fr.x+=1e-4:fr.z+=1e-4,fr.normalize(),pr.crossVectors(n,fr)),pr.normalize(),mr.crossVectors(fr,pr),i[0]=pr.x,i[4]=mr.x,i[8]=fr.x,i[1]=pr.y,i[5]=mr.y,i[9]=fr.y,i[2]=pr.z,i[6]=mr.z,i[10]=fr.z,this}multiply(t){return this.multiplyMatrices(this,t)}premultiply(t){return this.multiplyMatrices(t,this)}multiplyMatrices(t,e){const n=t.elements,i=e.elements,r=this.elements,s=n[0],a=n[4],o=n[8],l=n[12],c=n[1],h=n[5],u=n[9],d=n[13],p=n[2],m=n[6],f=n[10],g=n[14],v=n[3],_=n[7],x=n[11],y=n[15],M=i[0],S=i[4],b=i[8],w=i[12],T=i[1],E=i[5],A=i[9],R=i[13],C=i[2],P=i[6],I=i[10],L=i[14],U=i[3],N=i[7],D=i[11],O=i[15];return r[0]=s*M+a*T+o*C+l*U,r[4]=s*S+a*E+o*P+l*N,r[8]=s*b+a*A+o*I+l*D,r[12]=s*w+a*R+o*L+l*O,r[1]=c*M+h*T+u*C+d*U,r[5]=c*S+h*E+u*P+d*N,r[9]=c*b+h*A+u*I+d*D,r[13]=c*w+h*R+u*L+d*O,r[2]=p*M+m*T+f*C+g*U,r[6]=p*S+m*E+f*P+g*N,r[10]=p*b+m*A+f*I+g*D,r[14]=p*w+m*R+f*L+g*O,r[3]=v*M+_*T+x*C+y*U,r[7]=v*S+_*E+x*P+y*N,r[11]=v*b+_*A+x*I+y*D,r[15]=v*w+_*R+x*L+y*O,this}multiplyScalar(t){const e=this.elements;return e[0]*=t,e[4]*=t,e[8]*=t,e[12]*=t,e[1]*=t,e[5]*=t,e[9]*=t,e[13]*=t,e[2]*=t,e[6]*=t,e[10]*=t,e[14]*=t,e[3]*=t,e[7]*=t,e[11]*=t,e[15]*=t,this}determinant(){const t=this.elements,e=t[0],n=t[4],i=t[8],r=t[12],s=t[1],a=t[5],o=t[9],l=t[13],c=t[2],h=t[6],u=t[10],d=t[14];return t[3]*(+r*o*h-i*l*h-r*a*u+n*l*u+i*a*d-n*o*d)+t[7]*(+e*o*d-e*l*u+r*s*u-i*s*d+i*l*c-r*o*c)+t[11]*(+e*l*h-e*a*d-r*s*h+n*s*d+r*a*c-n*l*c)+t[15]*(-i*a*c-e*o*h+e*a*u+i*s*h-n*s*u+n*o*c)}transpose(){const t=this.elements;let e;return e=t[1],t[1]=t[4],t[4]=e,e=t[2],t[2]=t[8],t[8]=e,e=t[6],t[6]=t[9],t[9]=e,e=t[3],t[3]=t[12],t[12]=e,e=t[7],t[7]=t[13],t[13]=e,e=t[11],t[11]=t[14],t[14]=e,this}setPosition(t,e,n){const i=this.elements;return t.isVector3?(i[12]=t.x,i[13]=t.y,i[14]=t.z):(i[12]=t,i[13]=e,i[14]=n),this}invert(){const t=this.elements,e=t[0],n=t[1],i=t[2],r=t[3],s=t[4],a=t[5],o=t[6],l=t[7],c=t[8],h=t[9],u=t[10],d=t[11],p=t[12],m=t[13],f=t[14],g=t[15],v=h*f*l-m*u*l+m*o*d-a*f*d-h*o*g+a*u*g,_=p*u*l-c*f*l-p*o*d+s*f*d+c*o*g-s*u*g,x=c*m*l-p*h*l+p*a*d-s*m*d-c*a*g+s*h*g,y=p*h*o-c*m*o-p*a*u+s*m*u+c*a*f-s*h*f,M=e*v+n*_+i*x+r*y;if(0===M)return this.set(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);const S=1/M;return t[0]=v*S,t[1]=(m*u*r-h*f*r-m*i*d+n*f*d+h*i*g-n*u*g)*S,t[2]=(a*f*r-m*o*r+m*i*l-n*f*l-a*i*g+n*o*g)*S,t[3]=(h*o*r-a*u*r-h*i*l+n*u*l+a*i*d-n*o*d)*S,t[4]=_*S,t[5]=(c*f*r-p*u*r+p*i*d-e*f*d-c*i*g+e*u*g)*S,t[6]=(p*o*r-s*f*r-p*i*l+e*f*l+s*i*g-e*o*g)*S,t[7]=(s*u*r-c*o*r+c*i*l-e*u*l-s*i*d+e*o*d)*S,t[8]=x*S,t[9]=(p*h*r-c*m*r-p*n*d+e*m*d+c*n*g-e*h*g)*S,t[10]=(s*m*r-p*a*r+p*n*l-e*m*l-s*n*g+e*a*g)*S,t[11]=(c*a*r-s*h*r-c*n*l+e*h*l+s*n*d-e*a*d)*S,t[12]=y*S,t[13]=(c*m*i-p*h*i+p*n*u-e*m*u-c*n*f+e*h*f)*S,t[14]=(p*a*i-s*m*i-p*n*o+e*m*o+s*n*f-e*a*f)*S,t[15]=(s*h*i-c*a*i+c*n*o-e*h*o-s*n*u+e*a*u)*S,this}scale(t){const e=this.elements,n=t.x,i=t.y,r=t.z;return e[0]*=n,e[4]*=i,e[8]*=r,e[1]*=n,e[5]*=i,e[9]*=r,e[2]*=n,e[6]*=i,e[10]*=r,e[3]*=n,e[7]*=i,e[11]*=r,this}getMaxScaleOnAxis(){const t=this.elements,e=t[0]*t[0]+t[1]*t[1]+t[2]*t[2],n=t[4]*t[4]+t[5]*t[5]+t[6]*t[6],i=t[8]*t[8]+t[9]*t[9]+t[10]*t[10];return Math.sqrt(Math.max(e,n,i))}makeTranslation(t,e,n){return t.isVector3?this.set(1,0,0,t.x,0,1,0,t.y,0,0,1,t.z,0,0,0,1):this.set(1,0,0,t,0,1,0,e,0,0,1,n,0,0,0,1),this}makeRotationX(t){const e=Math.cos(t),n=Math.sin(t);return this.set(1,0,0,0,0,e,-n,0,0,n,e,0,0,0,0,1),this}makeRotationY(t){const e=Math.cos(t),n=Math.sin(t);return this.set(e,0,n,0,0,1,0,0,-n,0,e,0,0,0,0,1),this}makeRotationZ(t){const e=Math.cos(t),n=Math.sin(t);return this.set(e,-n,0,0,n,e,0,0,0,0,1,0,0,0,0,1),this}makeRotationAxis(t,e){const n=Math.cos(e),i=Math.sin(e),r=1-n,s=t.x,a=t.y,o=t.z,l=r*s,c=r*a;return this.set(l*s+n,l*a-i*o,l*o+i*a,0,l*a+i*o,c*a+n,c*o-i*s,0,l*o-i*a,c*o+i*s,r*o*o+n,0,0,0,0,1),this}makeScale(t,e,n){return this.set(t,0,0,0,0,e,0,0,0,0,n,0,0,0,0,1),this}makeShear(t,e,n,i,r,s){return this.set(1,n,r,0,t,1,s,0,e,i,1,0,0,0,0,1),this}compose(t,e,n){const i=this.elements,r=e._x,s=e._y,a=e._z,o=e._w,l=r+r,c=s+s,h=a+a,u=r*l,d=r*c,p=r*h,m=s*c,f=s*h,g=a*h,v=o*l,_=o*c,x=o*h,y=n.x,M=n.y,S=n.z;return i[0]=(1-(m+g))*y,i[1]=(d+x)*y,i[2]=(p-_)*y,i[3]=0,i[4]=(d-x)*M,i[5]=(1-(u+g))*M,i[6]=(f+v)*M,i[7]=0,i[8]=(p+_)*S,i[9]=(f-v)*S,i[10]=(1-(u+m))*S,i[11]=0,i[12]=t.x,i[13]=t.y,i[14]=t.z,i[15]=1,this}decompose(t,e,n){const i=this.elements;let r=cr.set(i[0],i[1],i[2]).length();const s=cr.set(i[4],i[5],i[6]).length(),a=cr.set(i[8],i[9],i[10]).length();this.determinant()<0&&(r=-r),t.x=i[12],t.y=i[13],t.z=i[14],hr.copy(this);const o=1/r,l=1/s,c=1/a;return hr.elements[0]*=o,hr.elements[1]*=o,hr.elements[2]*=o,hr.elements[4]*=l,hr.elements[5]*=l,hr.elements[6]*=l,hr.elements[8]*=c,hr.elements[9]*=c,hr.elements[10]*=c,e.setFromRotationMatrix(hr),n.x=r,n.y=s,n.z=a,this}makePerspective(t,e,n,i,r,s,a=2e3){const o=this.elements,l=2*r/(e-t),c=2*r/(n-i),h=(e+t)/(e-t),u=(n+i)/(n-i);let d,p;if(a===kn)d=-(s+r)/(s-r),p=-2*s*r/(s-r);else{if(a!==Vn)throw new Error("THREE.Matrix4.makePerspective(): Invalid coordinate system: "+a);d=-s/(s-r),p=-s*r/(s-r)}return o[0]=l,o[4]=0,o[8]=h,o[12]=0,o[1]=0,o[5]=c,o[9]=u,o[13]=0,o[2]=0,o[6]=0,o[10]=d,o[14]=p,o[3]=0,o[7]=0,o[11]=-1,o[15]=0,this}makeOrthographic(t,e,n,i,r,s,a=2e3){const o=this.elements,l=1/(e-t),c=1/(n-i),h=1/(s-r),u=(e+t)*l,d=(n+i)*c;let p,m;if(a===kn)p=(s+r)*h,m=-2*h;else{if(a!==Vn)throw new Error("THREE.Matrix4.makeOrthographic(): Invalid coordinate system: "+a);p=r*h,m=-1*h}return o[0]=2*l,o[4]=0,o[8]=0,o[12]=-u,o[1]=0,o[5]=2*c,o[9]=0,o[13]=-d,o[2]=0,o[6]=0,o[10]=m,o[14]=-p,o[3]=0,o[7]=0,o[11]=0,o[15]=1,this}equals(t){const e=this.elements,n=t.elements;for(let t=0;t<16;t++)if(e[t]!==n[t])return!1;return!0}fromArray(t,e=0){for(let n=0;n<16;n++)this.elements[n]=t[n+e];return this}toArray(t=[],e=0){const n=this.elements;return t[e]=n[0],t[e+1]=n[1],t[e+2]=n[2],t[e+3]=n[3],t[e+4]=n[4],t[e+5]=n[5],t[e+6]=n[6],t[e+7]=n[7],t[e+8]=n[8],t[e+9]=n[9],t[e+10]=n[10],t[e+11]=n[11],t[e+12]=n[12],t[e+13]=n[13],t[e+14]=n[14],t[e+15]=n[15],t}}const cr=new Li,hr=new lr,ur=new Li(0,0,0),dr=new Li(1,1,1),pr=new Li,mr=new Li,fr=new Li,gr=new lr,vr=new Ii;class _r{constructor(t=0,e=0,n=0,i=_r.DEFAULT_ORDER){this.isEuler=!0,this._x=t,this._y=e,this._z=n,this._order=i}get x(){return this._x}set x(t){this._x=t,this._onChangeCallback()}get y(){return this._y}set y(t){this._y=t,this._onChangeCallback()}get z(){return this._z}set z(t){this._z=t,this._onChangeCallback()}get order(){return this._order}set order(t){this._order=t,this._onChangeCallback()}set(t,e,n,i=this._order){return this._x=t,this._y=e,this._z=n,this._order=i,this._onChangeCallback(),this}clone(){return new this.constructor(this._x,this._y,this._z,this._order)}copy(t){return this._x=t._x,this._y=t._y,this._z=t._z,this._order=t._order,this._onChangeCallback(),this}setFromRotationMatrix(t,e=this._order,n=!0){const i=t.elements,r=i[0],s=i[4],a=i[8],o=i[1],l=i[5],c=i[9],h=i[2],u=i[6],d=i[10];switch(e){case"XYZ":this._y=Math.asin(Yn(a,-1,1)),Math.abs(a)<.9999999?(this._x=Math.atan2(-c,d),this._z=Math.atan2(-s,r)):(this._x=Math.atan2(u,l),this._z=0);break;case"YXZ":this._x=Math.asin(-Yn(c,-1,1)),Math.abs(c)<.9999999?(this._y=Math.atan2(a,d),this._z=Math.atan2(o,l)):(this._y=Math.atan2(-h,r),this._z=0);break;case"ZXY":this._x=Math.asin(Yn(u,-1,1)),Math.abs(u)<.9999999?(this._y=Math.atan2(-h,d),this._z=Math.atan2(-s,l)):(this._y=0,this._z=Math.atan2(o,r));break;case"ZYX":this._y=Math.asin(-Yn(h,-1,1)),Math.abs(h)<.9999999?(this._x=Math.atan2(u,d),this._z=Math.atan2(o,r)):(this._x=0,this._z=Math.atan2(-s,l));break;case"YZX":this._z=Math.asin(Yn(o,-1,1)),Math.abs(o)<.9999999?(this._x=Math.atan2(-c,l),this._y=Math.atan2(-h,r)):(this._x=0,this._y=Math.atan2(a,d));break;case"XZY":this._z=Math.asin(-Yn(s,-1,1)),Math.abs(s)<.9999999?(this._x=Math.atan2(u,l),this._y=Math.atan2(a,r)):(this._x=Math.atan2(-c,d),this._y=0);break;default:console.warn("THREE.Euler: .setFromRotationMatrix() encountered an unknown order: "+e)}return this._order=e,!0===n&&this._onChangeCallback(),this}setFromQuaternion(t,e,n){return gr.makeRotationFromQuaternion(t),this.setFromRotationMatrix(gr,e,n)}setFromVector3(t,e=this._order){return this.set(t.x,t.y,t.z,e)}reorder(t){return vr.setFromEuler(this),this.setFromQuaternion(vr,t)}equals(t){return t._x===this._x&&t._y===this._y&&t._z===this._z&&t._order===this._order}fromArray(t){return this._x=t[0],this._y=t[1],this._z=t[2],void 0!==t[3]&&(this._order=t[3]),this._onChangeCallback(),this}toArray(t=[],e=0){return t[e]=this._x,t[e+1]=this._y,t[e+2]=this._z,t[e+3]=this._order,t}_onChange(t){return this._onChangeCallback=t,this}_onChangeCallback(){}*[Symbol.iterator](){yield this._x,yield this._y,yield this._z,yield this._order}}_r.DEFAULT_ORDER="XYZ";class xr{constructor(){this.mask=1}set(t){this.mask=(1<>>0}enable(t){this.mask|=1<1){for(let t=0;t1){for(let t=0;t0&&(i.userData=this.userData),i.layers=this.layers.mask,i.matrix=this.matrix.toArray(),i.up=this.up.toArray(),!1===this.matrixAutoUpdate&&(i.matrixAutoUpdate=!1),this.isInstancedMesh&&(i.type="InstancedMesh",i.count=this.count,i.instanceMatrix=this.instanceMatrix.toJSON(),null!==this.instanceColor&&(i.instanceColor=this.instanceColor.toJSON())),this.isBatchedMesh&&(i.type="BatchedMesh",i.perObjectFrustumCulled=this.perObjectFrustumCulled,i.sortObjects=this.sortObjects,i.drawRanges=this._drawRanges,i.reservedRanges=this._reservedRanges,i.visibility=this._visibility,i.active=this._active,i.bounds=this._bounds.map((t=>({boxInitialized:t.boxInitialized,boxMin:t.box.min.toArray(),boxMax:t.box.max.toArray(),sphereInitialized:t.sphereInitialized,sphereRadius:t.sphere.radius,sphereCenter:t.sphere.center.toArray()}))),i.maxInstanceCount=this._maxInstanceCount,i.maxVertexCount=this._maxVertexCount,i.maxIndexCount=this._maxIndexCount,i.geometryInitialized=this._geometryInitialized,i.geometryCount=this._geometryCount,i.matricesTexture=this._matricesTexture.toJSON(t),null!==this._colorsTexture&&(i.colorsTexture=this._colorsTexture.toJSON(t)),null!==this.boundingSphere&&(i.boundingSphere={center:i.boundingSphere.center.toArray(),radius:i.boundingSphere.radius}),null!==this.boundingBox&&(i.boundingBox={min:i.boundingBox.min.toArray(),max:i.boundingBox.max.toArray()})),this.isScene)this.background&&(this.background.isColor?i.background=this.background.toJSON():this.background.isTexture&&(i.background=this.background.toJSON(t).uuid)),this.environment&&this.environment.isTexture&&!0!==this.environment.isRenderTargetTexture&&(i.environment=this.environment.toJSON(t).uuid);else if(this.isMesh||this.isLine||this.isPoints){i.geometry=r(t.geometries,this.geometry);const e=this.geometry.parameters;if(void 0!==e&&void 0!==e.shapes){const n=e.shapes;if(Array.isArray(n))for(let e=0,i=n.length;e0){i.children=[];for(let e=0;e0){i.animations=[];for(let e=0;e0&&(n.geometries=e),i.length>0&&(n.materials=i),r.length>0&&(n.textures=r),a.length>0&&(n.images=a),o.length>0&&(n.shapes=o),l.length>0&&(n.skeletons=l),c.length>0&&(n.animations=c),h.length>0&&(n.nodes=h)}return n.object=i,n;function s(t){const e=[];for(const n in t){const i=t[n];delete i.metadata,e.push(i)}return e}}clone(t){return(new this.constructor).copy(this,t)}copy(t,e=!0){if(this.name=t.name,this.up.copy(t.up),this.position.copy(t.position),this.rotation.order=t.rotation.order,this.quaternion.copy(t.quaternion),this.scale.copy(t.scale),this.matrix.copy(t.matrix),this.matrixWorld.copy(t.matrixWorld),this.matrixAutoUpdate=t.matrixAutoUpdate,this.matrixWorldAutoUpdate=t.matrixWorldAutoUpdate,this.matrixWorldNeedsUpdate=t.matrixWorldNeedsUpdate,this.layers.mask=t.layers.mask,this.visible=t.visible,this.castShadow=t.castShadow,this.receiveShadow=t.receiveShadow,this.frustumCulled=t.frustumCulled,this.renderOrder=t.renderOrder,this.animations=t.animations.slice(),this.userData=JSON.parse(JSON.stringify(t.userData)),!0===e)for(let e=0;e0?i.multiplyScalar(1/Math.sqrt(r)):i.set(0,0,0)}static getBarycoord(t,e,n,i,r){Or.subVectors(i,e),Fr.subVectors(n,e),Br.subVectors(t,e);const s=Or.dot(Or),a=Or.dot(Fr),o=Or.dot(Br),l=Fr.dot(Fr),c=Fr.dot(Br),h=s*l-a*a;if(0===h)return r.set(0,0,0),null;const u=1/h,d=(l*o-a*c)*u,p=(s*c-a*o)*u;return r.set(1-d-p,p,d)}static containsPoint(t,e,n,i){return null!==this.getBarycoord(t,e,n,i,zr)&&(zr.x>=0&&zr.y>=0&&zr.x+zr.y<=1)}static getInterpolation(t,e,n,i,r,s,a,o){return null===this.getBarycoord(t,e,n,i,zr)?(o.x=0,o.y=0,"z"in o&&(o.z=0),"w"in o&&(o.w=0),null):(o.setScalar(0),o.addScaledVector(r,zr.x),o.addScaledVector(s,zr.y),o.addScaledVector(a,zr.z),o)}static getInterpolatedAttribute(t,e,n,i,r,s){return jr.setScalar(0),qr.setScalar(0),Yr.setScalar(0),jr.fromBufferAttribute(t,e),qr.fromBufferAttribute(t,n),Yr.fromBufferAttribute(t,i),s.setScalar(0),s.addScaledVector(jr,r.x),s.addScaledVector(qr,r.y),s.addScaledVector(Yr,r.z),s}static isFrontFacing(t,e,n,i){return Or.subVectors(n,e),Fr.subVectors(t,e),Or.cross(Fr).dot(i)<0}set(t,e,n){return this.a.copy(t),this.b.copy(e),this.c.copy(n),this}setFromPointsAndIndices(t,e,n,i){return this.a.copy(t[e]),this.b.copy(t[n]),this.c.copy(t[i]),this}setFromAttributeAndIndices(t,e,n,i){return this.a.fromBufferAttribute(t,e),this.b.fromBufferAttribute(t,n),this.c.fromBufferAttribute(t,i),this}clone(){return(new this.constructor).copy(this)}copy(t){return this.a.copy(t.a),this.b.copy(t.b),this.c.copy(t.c),this}getArea(){return Or.subVectors(this.c,this.b),Fr.subVectors(this.a,this.b),.5*Or.cross(Fr).length()}getMidpoint(t){return t.addVectors(this.a,this.b).add(this.c).multiplyScalar(1/3)}getNormal(t){return Zr.getNormal(this.a,this.b,this.c,t)}getPlane(t){return t.setFromCoplanarPoints(this.a,this.b,this.c)}getBarycoord(t,e){return Zr.getBarycoord(t,this.a,this.b,this.c,e)}getInterpolation(t,e,n,i,r){return Zr.getInterpolation(t,this.a,this.b,this.c,e,n,i,r)}containsPoint(t){return Zr.containsPoint(t,this.a,this.b,this.c)}isFrontFacing(t){return Zr.isFrontFacing(this.a,this.b,this.c,t)}intersectsBox(t){return t.intersectsTriangle(this)}closestPointToPoint(t,e){const n=this.a,i=this.b,r=this.c;let s,a;kr.subVectors(i,n),Vr.subVectors(r,n),Gr.subVectors(t,n);const o=kr.dot(Gr),l=Vr.dot(Gr);if(o<=0&&l<=0)return e.copy(n);Wr.subVectors(t,i);const c=kr.dot(Wr),h=Vr.dot(Wr);if(c>=0&&h<=c)return e.copy(i);const u=o*h-c*l;if(u<=0&&o>=0&&c<=0)return s=o/(o-c),e.copy(n).addScaledVector(kr,s);Xr.subVectors(t,r);const d=kr.dot(Xr),p=Vr.dot(Xr);if(p>=0&&d<=p)return e.copy(r);const m=d*l-o*p;if(m<=0&&l>=0&&p<=0)return a=l/(l-p),e.copy(n).addScaledVector(Vr,a);const f=c*p-d*h;if(f<=0&&h-c>=0&&d-p>=0)return Hr.subVectors(r,i),a=(h-c)/(h-c+(d-p)),e.copy(i).addScaledVector(Hr,a);const g=1/(f+m+u);return s=m*g,a=u*g,e.copy(n).addScaledVector(kr,s).addScaledVector(Vr,a)}equals(t){return t.a.equals(this.a)&&t.b.equals(this.b)&&t.c.equals(this.c)}}const Jr={aliceblue:15792383,antiquewhite:16444375,aqua:65535,aquamarine:8388564,azure:15794175,beige:16119260,bisque:16770244,black:0,blanchedalmond:16772045,blue:255,blueviolet:9055202,brown:10824234,burlywood:14596231,cadetblue:6266528,chartreuse:8388352,chocolate:13789470,coral:16744272,cornflowerblue:6591981,cornsilk:16775388,crimson:14423100,cyan:65535,darkblue:139,darkcyan:35723,darkgoldenrod:12092939,darkgray:11119017,darkgreen:25600,darkgrey:11119017,darkkhaki:12433259,darkmagenta:9109643,darkolivegreen:5597999,darkorange:16747520,darkorchid:10040012,darkred:9109504,darksalmon:15308410,darkseagreen:9419919,darkslateblue:4734347,darkslategray:3100495,darkslategrey:3100495,darkturquoise:52945,darkviolet:9699539,deeppink:16716947,deepskyblue:49151,dimgray:6908265,dimgrey:6908265,dodgerblue:2003199,firebrick:11674146,floralwhite:16775920,forestgreen:2263842,fuchsia:16711935,gainsboro:14474460,ghostwhite:16316671,gold:16766720,goldenrod:14329120,gray:8421504,green:32768,greenyellow:11403055,grey:8421504,honeydew:15794160,hotpink:16738740,indianred:13458524,indigo:4915330,ivory:16777200,khaki:15787660,lavender:15132410,lavenderblush:16773365,lawngreen:8190976,lemonchiffon:16775885,lightblue:11393254,lightcoral:15761536,lightcyan:14745599,lightgoldenrodyellow:16448210,lightgray:13882323,lightgreen:9498256,lightgrey:13882323,lightpink:16758465,lightsalmon:16752762,lightseagreen:2142890,lightskyblue:8900346,lightslategray:7833753,lightslategrey:7833753,lightsteelblue:11584734,lightyellow:16777184,lime:65280,limegreen:3329330,linen:16445670,magenta:16711935,maroon:8388608,mediumaquamarine:6737322,mediumblue:205,mediumorchid:12211667,mediumpurple:9662683,mediumseagreen:3978097,mediumslateblue:8087790,mediumspringgreen:64154,mediumturquoise:4772300,mediumvioletred:13047173,midnightblue:1644912,mintcream:16121850,mistyrose:16770273,moccasin:16770229,navajowhite:16768685,navy:128,oldlace:16643558,olive:8421376,olivedrab:7048739,orange:16753920,orangered:16729344,orchid:14315734,palegoldenrod:15657130,palegreen:10025880,paleturquoise:11529966,palevioletred:14381203,papayawhip:16773077,peachpuff:16767673,peru:13468991,pink:16761035,plum:14524637,powderblue:11591910,purple:8388736,rebeccapurple:6697881,red:16711680,rosybrown:12357519,royalblue:4286945,saddlebrown:9127187,salmon:16416882,sandybrown:16032864,seagreen:3050327,seashell:16774638,sienna:10506797,silver:12632256,skyblue:8900331,slateblue:6970061,slategray:7372944,slategrey:7372944,snow:16775930,springgreen:65407,steelblue:4620980,tan:13808780,teal:32896,thistle:14204888,tomato:16737095,turquoise:4251856,violet:15631086,wheat:16113331,white:16777215,whitesmoke:16119285,yellow:16776960,yellowgreen:10145074},Kr={h:0,s:0,l:0},$r={h:0,s:0,l:0};function Qr(t,e,n){return n<0&&(n+=1),n>1&&(n-=1),n<1/6?t+6*(e-t)*n:n<.5?e:n<2/3?t+6*(e-t)*(2/3-n):t}class ts{constructor(t,e,n){return this.isColor=!0,this.r=1,this.g=1,this.b=1,this.set(t,e,n)}set(t,e,n){if(void 0===e&&void 0===n){const e=t;e&&e.isColor?this.copy(e):"number"==typeof e?this.setHex(e):"string"==typeof e&&this.setStyle(e)}else this.setRGB(t,e,n);return this}setScalar(t){return this.r=t,this.g=t,this.b=t,this}setHex(t,e=Je){return t=Math.floor(t),this.r=(t>>16&255)/255,this.g=(t>>8&255)/255,this.b=(255&t)/255,mi.toWorkingColorSpace(this,e),this}setRGB(t,e,n,i=mi.workingColorSpace){return this.r=t,this.g=e,this.b=n,mi.toWorkingColorSpace(this,i),this}setHSL(t,e,n,i=mi.workingColorSpace){if(t=Zn(t,1),e=Yn(e,0,1),n=Yn(n,0,1),0===e)this.r=this.g=this.b=n;else{const i=n<=.5?n*(1+e):n+e-n*e,r=2*n-i;this.r=Qr(r,i,t+1/3),this.g=Qr(r,i,t),this.b=Qr(r,i,t-1/3)}return mi.toWorkingColorSpace(this,i),this}setStyle(t,e=Je){function n(e){void 0!==e&&parseFloat(e)<1&&console.warn("THREE.Color: Alpha component of "+t+" will be ignored.")}let i;if(i=/^(\w+)\(([^\)]*)\)/.exec(t)){let r;const s=i[1],a=i[2];switch(s){case"rgb":case"rgba":if(r=/^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(a))return n(r[4]),this.setRGB(Math.min(255,parseInt(r[1],10))/255,Math.min(255,parseInt(r[2],10))/255,Math.min(255,parseInt(r[3],10))/255,e);if(r=/^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(a))return n(r[4]),this.setRGB(Math.min(100,parseInt(r[1],10))/100,Math.min(100,parseInt(r[2],10))/100,Math.min(100,parseInt(r[3],10))/100,e);break;case"hsl":case"hsla":if(r=/^\s*(\d*\.?\d+)\s*,\s*(\d*\.?\d+)\%\s*,\s*(\d*\.?\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(a))return n(r[4]),this.setHSL(parseFloat(r[1])/360,parseFloat(r[2])/100,parseFloat(r[3])/100,e);break;default:console.warn("THREE.Color: Unknown color model "+t)}}else if(i=/^\#([A-Fa-f\d]+)$/.exec(t)){const n=i[1],r=n.length;if(3===r)return this.setRGB(parseInt(n.charAt(0),16)/15,parseInt(n.charAt(1),16)/15,parseInt(n.charAt(2),16)/15,e);if(6===r)return this.setHex(parseInt(n,16),e);console.warn("THREE.Color: Invalid hex color "+t)}else if(t&&t.length>0)return this.setColorName(t,e);return this}setColorName(t,e=Je){const n=Jr[t.toLowerCase()];return void 0!==n?this.setHex(n,e):console.warn("THREE.Color: Unknown color "+t),this}clone(){return new this.constructor(this.r,this.g,this.b)}copy(t){return this.r=t.r,this.g=t.g,this.b=t.b,this}copySRGBToLinear(t){return this.r=fi(t.r),this.g=fi(t.g),this.b=fi(t.b),this}copyLinearToSRGB(t){return this.r=gi(t.r),this.g=gi(t.g),this.b=gi(t.b),this}convertSRGBToLinear(){return this.copySRGBToLinear(this),this}convertLinearToSRGB(){return this.copyLinearToSRGB(this),this}getHex(t=Je){return mi.fromWorkingColorSpace(es.copy(this),t),65536*Math.round(Yn(255*es.r,0,255))+256*Math.round(Yn(255*es.g,0,255))+Math.round(Yn(255*es.b,0,255))}getHexString(t=Je){return("000000"+this.getHex(t).toString(16)).slice(-6)}getHSL(t,e=mi.workingColorSpace){mi.fromWorkingColorSpace(es.copy(this),e);const n=es.r,i=es.g,r=es.b,s=Math.max(n,i,r),a=Math.min(n,i,r);let o,l;const c=(a+s)/2;if(a===s)o=0,l=0;else{const t=s-a;switch(l=c<=.5?t/(s+a):t/(2-s-a),s){case n:o=(i-r)/t+(i0!=t>0&&this.version++,this._alphaTest=t}onBeforeRender(){}onBeforeCompile(){}customProgramCacheKey(){return this.onBeforeCompile.toString()}setValues(t){if(void 0!==t)for(const e in t){const n=t[e];if(void 0===n){console.warn(`THREE.Material: parameter '${e}' has value of undefined.`);continue}const i=this[e];void 0!==i?i&&i.isColor?i.set(n):i&&i.isVector3&&n&&n.isVector3?i.copy(n):this[e]=n:console.warn(`THREE.Material: '${e}' is not a property of THREE.${this.type}.`)}}toJSON(t){const e=void 0===t||"string"==typeof t;e&&(t={textures:{},images:{}});const n={metadata:{version:4.6,type:"Material",generator:"Material.toJSON"}};function i(t){const e=[];for(const n in t){const i=t[n];delete i.metadata,e.push(i)}return e}if(n.uuid=this.uuid,n.type=this.type,""!==this.name&&(n.name=this.name),this.color&&this.color.isColor&&(n.color=this.color.getHex()),void 0!==this.roughness&&(n.roughness=this.roughness),void 0!==this.metalness&&(n.metalness=this.metalness),void 0!==this.sheen&&(n.sheen=this.sheen),this.sheenColor&&this.sheenColor.isColor&&(n.sheenColor=this.sheenColor.getHex()),void 0!==this.sheenRoughness&&(n.sheenRoughness=this.sheenRoughness),this.emissive&&this.emissive.isColor&&(n.emissive=this.emissive.getHex()),void 0!==this.emissiveIntensity&&1!==this.emissiveIntensity&&(n.emissiveIntensity=this.emissiveIntensity),this.specular&&this.specular.isColor&&(n.specular=this.specular.getHex()),void 0!==this.specularIntensity&&(n.specularIntensity=this.specularIntensity),this.specularColor&&this.specularColor.isColor&&(n.specularColor=this.specularColor.getHex()),void 0!==this.shininess&&(n.shininess=this.shininess),void 0!==this.clearcoat&&(n.clearcoat=this.clearcoat),void 0!==this.clearcoatRoughness&&(n.clearcoatRoughness=this.clearcoatRoughness),this.clearcoatMap&&this.clearcoatMap.isTexture&&(n.clearcoatMap=this.clearcoatMap.toJSON(t).uuid),this.clearcoatRoughnessMap&&this.clearcoatRoughnessMap.isTexture&&(n.clearcoatRoughnessMap=this.clearcoatRoughnessMap.toJSON(t).uuid),this.clearcoatNormalMap&&this.clearcoatNormalMap.isTexture&&(n.clearcoatNormalMap=this.clearcoatNormalMap.toJSON(t).uuid,n.clearcoatNormalScale=this.clearcoatNormalScale.toArray()),void 0!==this.dispersion&&(n.dispersion=this.dispersion),void 0!==this.iridescence&&(n.iridescence=this.iridescence),void 0!==this.iridescenceIOR&&(n.iridescenceIOR=this.iridescenceIOR),void 0!==this.iridescenceThicknessRange&&(n.iridescenceThicknessRange=this.iridescenceThicknessRange),this.iridescenceMap&&this.iridescenceMap.isTexture&&(n.iridescenceMap=this.iridescenceMap.toJSON(t).uuid),this.iridescenceThicknessMap&&this.iridescenceThicknessMap.isTexture&&(n.iridescenceThicknessMap=this.iridescenceThicknessMap.toJSON(t).uuid),void 0!==this.anisotropy&&(n.anisotropy=this.anisotropy),void 0!==this.anisotropyRotation&&(n.anisotropyRotation=this.anisotropyRotation),this.anisotropyMap&&this.anisotropyMap.isTexture&&(n.anisotropyMap=this.anisotropyMap.toJSON(t).uuid),this.map&&this.map.isTexture&&(n.map=this.map.toJSON(t).uuid),this.matcap&&this.matcap.isTexture&&(n.matcap=this.matcap.toJSON(t).uuid),this.alphaMap&&this.alphaMap.isTexture&&(n.alphaMap=this.alphaMap.toJSON(t).uuid),this.lightMap&&this.lightMap.isTexture&&(n.lightMap=this.lightMap.toJSON(t).uuid,n.lightMapIntensity=this.lightMapIntensity),this.aoMap&&this.aoMap.isTexture&&(n.aoMap=this.aoMap.toJSON(t).uuid,n.aoMapIntensity=this.aoMapIntensity),this.bumpMap&&this.bumpMap.isTexture&&(n.bumpMap=this.bumpMap.toJSON(t).uuid,n.bumpScale=this.bumpScale),this.normalMap&&this.normalMap.isTexture&&(n.normalMap=this.normalMap.toJSON(t).uuid,n.normalMapType=this.normalMapType,n.normalScale=this.normalScale.toArray()),this.displacementMap&&this.displacementMap.isTexture&&(n.displacementMap=this.displacementMap.toJSON(t).uuid,n.displacementScale=this.displacementScale,n.displacementBias=this.displacementBias),this.roughnessMap&&this.roughnessMap.isTexture&&(n.roughnessMap=this.roughnessMap.toJSON(t).uuid),this.metalnessMap&&this.metalnessMap.isTexture&&(n.metalnessMap=this.metalnessMap.toJSON(t).uuid),this.emissiveMap&&this.emissiveMap.isTexture&&(n.emissiveMap=this.emissiveMap.toJSON(t).uuid),this.specularMap&&this.specularMap.isTexture&&(n.specularMap=this.specularMap.toJSON(t).uuid),this.specularIntensityMap&&this.specularIntensityMap.isTexture&&(n.specularIntensityMap=this.specularIntensityMap.toJSON(t).uuid),this.specularColorMap&&this.specularColorMap.isTexture&&(n.specularColorMap=this.specularColorMap.toJSON(t).uuid),this.envMap&&this.envMap.isTexture&&(n.envMap=this.envMap.toJSON(t).uuid,void 0!==this.combine&&(n.combine=this.combine)),void 0!==this.envMapRotation&&(n.envMapRotation=this.envMapRotation.toArray()),void 0!==this.envMapIntensity&&(n.envMapIntensity=this.envMapIntensity),void 0!==this.reflectivity&&(n.reflectivity=this.reflectivity),void 0!==this.refractionRatio&&(n.refractionRatio=this.refractionRatio),this.gradientMap&&this.gradientMap.isTexture&&(n.gradientMap=this.gradientMap.toJSON(t).uuid),void 0!==this.transmission&&(n.transmission=this.transmission),this.transmissionMap&&this.transmissionMap.isTexture&&(n.transmissionMap=this.transmissionMap.toJSON(t).uuid),void 0!==this.thickness&&(n.thickness=this.thickness),this.thicknessMap&&this.thicknessMap.isTexture&&(n.thicknessMap=this.thicknessMap.toJSON(t).uuid),void 0!==this.attenuationDistance&&this.attenuationDistance!==1/0&&(n.attenuationDistance=this.attenuationDistance),void 0!==this.attenuationColor&&(n.attenuationColor=this.attenuationColor.getHex()),void 0!==this.size&&(n.size=this.size),null!==this.shadowSide&&(n.shadowSide=this.shadowSide),void 0!==this.sizeAttenuation&&(n.sizeAttenuation=this.sizeAttenuation),1!==this.blending&&(n.blending=this.blending),this.side!==u&&(n.side=this.side),!0===this.vertexColors&&(n.vertexColors=!0),this.opacity<1&&(n.opacity=this.opacity),!0===this.transparent&&(n.transparent=!0),this.blendSrc!==C&&(n.blendSrc=this.blendSrc),this.blendDst!==P&&(n.blendDst=this.blendDst),this.blendEquation!==y&&(n.blendEquation=this.blendEquation),null!==this.blendSrcAlpha&&(n.blendSrcAlpha=this.blendSrcAlpha),null!==this.blendDstAlpha&&(n.blendDstAlpha=this.blendDstAlpha),null!==this.blendEquationAlpha&&(n.blendEquationAlpha=this.blendEquationAlpha),this.blendColor&&this.blendColor.isColor&&(n.blendColor=this.blendColor.getHex()),0!==this.blendAlpha&&(n.blendAlpha=this.blendAlpha),3!==this.depthFunc&&(n.depthFunc=this.depthFunc),!1===this.depthTest&&(n.depthTest=this.depthTest),!1===this.depthWrite&&(n.depthWrite=this.depthWrite),!1===this.colorWrite&&(n.colorWrite=this.colorWrite),255!==this.stencilWriteMask&&(n.stencilWriteMask=this.stencilWriteMask),519!==this.stencilFunc&&(n.stencilFunc=this.stencilFunc),0!==this.stencilRef&&(n.stencilRef=this.stencilRef),255!==this.stencilFuncMask&&(n.stencilFuncMask=this.stencilFuncMask),this.stencilFail!==an&&(n.stencilFail=this.stencilFail),this.stencilZFail!==an&&(n.stencilZFail=this.stencilZFail),this.stencilZPass!==an&&(n.stencilZPass=this.stencilZPass),!0===this.stencilWrite&&(n.stencilWrite=this.stencilWrite),void 0!==this.rotation&&0!==this.rotation&&(n.rotation=this.rotation),!0===this.polygonOffset&&(n.polygonOffset=!0),0!==this.polygonOffsetFactor&&(n.polygonOffsetFactor=this.polygonOffsetFactor),0!==this.polygonOffsetUnits&&(n.polygonOffsetUnits=this.polygonOffsetUnits),void 0!==this.linewidth&&1!==this.linewidth&&(n.linewidth=this.linewidth),void 0!==this.dashSize&&(n.dashSize=this.dashSize),void 0!==this.gapSize&&(n.gapSize=this.gapSize),void 0!==this.scale&&(n.scale=this.scale),!0===this.dithering&&(n.dithering=!0),this.alphaTest>0&&(n.alphaTest=this.alphaTest),!0===this.alphaHash&&(n.alphaHash=!0),!0===this.alphaToCoverage&&(n.alphaToCoverage=!0),!0===this.premultipliedAlpha&&(n.premultipliedAlpha=!0),!0===this.forceSinglePass&&(n.forceSinglePass=!0),!0===this.wireframe&&(n.wireframe=!0),this.wireframeLinewidth>1&&(n.wireframeLinewidth=this.wireframeLinewidth),"round"!==this.wireframeLinecap&&(n.wireframeLinecap=this.wireframeLinecap),"round"!==this.wireframeLinejoin&&(n.wireframeLinejoin=this.wireframeLinejoin),!0===this.flatShading&&(n.flatShading=!0),!1===this.visible&&(n.visible=!1),!1===this.toneMapped&&(n.toneMapped=!1),!1===this.fog&&(n.fog=!1),Object.keys(this.userData).length>0&&(n.userData=this.userData),e){const e=i(t.textures),r=i(t.images);e.length>0&&(n.textures=e),r.length>0&&(n.images=r)}return n}clone(){return(new this.constructor).copy(this)}copy(t){this.name=t.name,this.blending=t.blending,this.side=t.side,this.vertexColors=t.vertexColors,this.opacity=t.opacity,this.transparent=t.transparent,this.blendSrc=t.blendSrc,this.blendDst=t.blendDst,this.blendEquation=t.blendEquation,this.blendSrcAlpha=t.blendSrcAlpha,this.blendDstAlpha=t.blendDstAlpha,this.blendEquationAlpha=t.blendEquationAlpha,this.blendColor.copy(t.blendColor),this.blendAlpha=t.blendAlpha,this.depthFunc=t.depthFunc,this.depthTest=t.depthTest,this.depthWrite=t.depthWrite,this.stencilWriteMask=t.stencilWriteMask,this.stencilFunc=t.stencilFunc,this.stencilRef=t.stencilRef,this.stencilFuncMask=t.stencilFuncMask,this.stencilFail=t.stencilFail,this.stencilZFail=t.stencilZFail,this.stencilZPass=t.stencilZPass,this.stencilWrite=t.stencilWrite;const e=t.clippingPlanes;let n=null;if(null!==e){const t=e.length;n=new Array(t);for(let i=0;i!==t;++i)n[i]=e[i].clone()}return this.clippingPlanes=n,this.clipIntersection=t.clipIntersection,this.clipShadows=t.clipShadows,this.shadowSide=t.shadowSide,this.colorWrite=t.colorWrite,this.precision=t.precision,this.polygonOffset=t.polygonOffset,this.polygonOffsetFactor=t.polygonOffsetFactor,this.polygonOffsetUnits=t.polygonOffsetUnits,this.dithering=t.dithering,this.alphaTest=t.alphaTest,this.alphaHash=t.alphaHash,this.alphaToCoverage=t.alphaToCoverage,this.premultipliedAlpha=t.premultipliedAlpha,this.forceSinglePass=t.forceSinglePass,this.visible=t.visible,this.toneMapped=t.toneMapped,this.userData=JSON.parse(JSON.stringify(t.userData)),this}dispose(){this.dispatchEvent({type:"dispose"})}set needsUpdate(t){!0===t&&this.version++}onBuild(){console.warn("Material: onBuild() has been removed.")}}class rs extends is{constructor(t){super(),this.isMeshBasicMaterial=!0,this.type="MeshBasicMaterial",this.color=new ts(16777215),this.map=null,this.lightMap=null,this.lightMapIntensity=1,this.aoMap=null,this.aoMapIntensity=1,this.specularMap=null,this.alphaMap=null,this.envMap=null,this.envMapRotation=new _r,this.combine=Y,this.reflectivity=1,this.refractionRatio=.98,this.wireframe=!1,this.wireframeLinewidth=1,this.wireframeLinecap="round",this.wireframeLinejoin="round",this.fog=!0,this.setValues(t)}copy(t){return super.copy(t),this.color.copy(t.color),this.map=t.map,this.lightMap=t.lightMap,this.lightMapIntensity=t.lightMapIntensity,this.aoMap=t.aoMap,this.aoMapIntensity=t.aoMapIntensity,this.specularMap=t.specularMap,this.alphaMap=t.alphaMap,this.envMap=t.envMap,this.envMapRotation.copy(t.envMapRotation),this.combine=t.combine,this.reflectivity=t.reflectivity,this.refractionRatio=t.refractionRatio,this.wireframe=t.wireframe,this.wireframeLinewidth=t.wireframeLinewidth,this.wireframeLinecap=t.wireframeLinecap,this.wireframeLinejoin=t.wireframeLinejoin,this.fog=t.fog,this}}const ss=as();function as(){const t=new ArrayBuffer(4),e=new Float32Array(t),n=new Uint32Array(t),i=new Uint32Array(512),r=new Uint32Array(512);for(let t=0;t<256;++t){const e=t-127;e<-27?(i[t]=0,i[256|t]=32768,r[t]=24,r[256|t]=24):e<-14?(i[t]=1024>>-e-14,i[256|t]=1024>>-e-14|32768,r[t]=-e-1,r[256|t]=-e-1):e<=15?(i[t]=e+15<<10,i[256|t]=e+15<<10|32768,r[t]=13,r[256|t]=13):e<128?(i[t]=31744,i[256|t]=64512,r[t]=24,r[256|t]=24):(i[t]=31744,i[256|t]=64512,r[t]=13,r[256|t]=13)}const s=new Uint32Array(2048),a=new Uint32Array(64),o=new Uint32Array(64);for(let t=1;t<1024;++t){let e=t<<13,n=0;for(;0==(8388608&e);)e<<=1,n-=8388608;e&=-8388609,n+=947912704,s[t]=e|n}for(let t=1024;t<2048;++t)s[t]=939524096+(t-1024<<13);for(let t=1;t<31;++t)a[t]=t<<23;a[31]=1199570944,a[32]=2147483648;for(let t=33;t<63;++t)a[t]=2147483648+(t-32<<23);a[63]=3347054592;for(let t=1;t<64;++t)32!==t&&(o[t]=1024);return{floatView:e,uint32View:n,baseTable:i,shiftTable:r,mantissaTable:s,exponentTable:a,offsetTable:o}}function os(t){Math.abs(t)>65504&&console.warn("THREE.DataUtils.toHalfFloat(): Value out of range."),t=Yn(t,-65504,65504),ss.floatView[0]=t;const e=ss.uint32View[0],n=e>>23&511;return ss.baseTable[n]+((8388607&e)>>ss.shiftTable[n])}function ls(t){const e=t>>10;return ss.uint32View[0]=ss.mantissaTable[ss.offsetTable[e]+(1023&t)]+ss.exponentTable[e],ss.floatView[0]}const cs={toHalfFloat:os,fromHalfFloat:ls},hs=new Li,us=new ti;class ds{constructor(t,e,n=!1){if(Array.isArray(t))throw new TypeError("THREE.BufferAttribute: array should be a Typed Array.");this.isBufferAttribute=!0,this.name="",this.array=t,this.itemSize=e,this.count=void 0!==t?t.length/e:0,this.normalized=n,this.usage=Cn,this.updateRanges=[],this.gpuType=Lt,this.version=0}onUploadCallback(){}set needsUpdate(t){!0===t&&this.version++}setUsage(t){return this.usage=t,this}addUpdateRange(t,e){this.updateRanges.push({start:t,count:e})}clearUpdateRanges(){this.updateRanges.length=0}copy(t){return this.name=t.name,this.array=new t.array.constructor(t.array),this.itemSize=t.itemSize,this.count=t.count,this.normalized=t.normalized,this.usage=t.usage,this.gpuType=t.gpuType,this}copyAt(t,e,n){t*=this.itemSize,n*=e.itemSize;for(let i=0,r=this.itemSize;i0&&(t.userData=this.userData),void 0!==this.parameters){const e=this.parameters;for(const n in e)void 0!==e[n]&&(t[n]=e[n]);return t}t.data={attributes:{}};const e=this.index;null!==e&&(t.data.index={type:e.array.constructor.name,array:Array.prototype.slice.call(e.array)});const n=this.attributes;for(const e in n){const i=n[e];t.data.attributes[e]=i.toJSON(t.data)}const i={};let r=!1;for(const e in this.morphAttributes){const n=this.morphAttributes[e],s=[];for(let e=0,i=n.length;e0&&(i[e]=s,r=!0)}r&&(t.data.morphAttributes=i,t.data.morphTargetsRelative=this.morphTargetsRelative);const s=this.groups;s.length>0&&(t.data.groups=JSON.parse(JSON.stringify(s)));const a=this.boundingSphere;return null!==a&&(t.data.boundingSphere={center:a.center.toArray(),radius:a.radius}),t}clone(){return(new this.constructor).copy(this)}copy(t){this.index=null,this.attributes={},this.morphAttributes={},this.groups=[],this.boundingBox=null,this.boundingSphere=null;const e={};this.name=t.name;const n=t.index;null!==n&&this.setIndex(n.clone(e));const i=t.attributes;for(const t in i){const n=i[t];this.setAttribute(t,n.clone(e))}const r=t.morphAttributes;for(const t in r){const n=[],i=r[t];for(let t=0,r=i.length;t0){const n=t[e[0]];if(void 0!==n){this.morphTargetInfluences=[],this.morphTargetDictionary={};for(let t=0,e=n.length;t(t.far-t.near)**2)return}Ps.copy(r).invert(),Is.copy(t.ray).applyMatrix4(Ps),null!==n.boundingBox&&!1===Is.intersectsBox(n.boundingBox)||this._computeIntersections(t,e,Is)}}_computeIntersections(t,e,n){let i;const r=this.geometry,s=this.material,a=r.index,o=r.attributes.position,l=r.attributes.uv,c=r.attributes.uv1,h=r.attributes.normal,u=r.groups,d=r.drawRange;if(null!==a)if(Array.isArray(s))for(let r=0,o=u.length;rn.far?null:{distance:c,point:ks.clone(),object:t}}(t,e,n,i,Ns,Ds,Os,zs);if(h){const t=new Li;Zr.getBarycoord(zs,Ns,Ds,Os,t),r&&(h.uv=Zr.getInterpolatedAttribute(r,o,l,c,t,new ti)),s&&(h.uv1=Zr.getInterpolatedAttribute(s,o,l,c,t,new ti)),a&&(h.normal=Zr.getInterpolatedAttribute(a,o,l,c,t,new Li),h.normal.dot(i.direction)>0&&h.normal.multiplyScalar(-1));const e={a:o,b:l,c:c,normal:new Li,materialIndex:0};Zr.getNormal(Ns,Ds,Os,e.normal),h.face=e,h.barycoord=t}return h}class Gs extends Cs{constructor(t=1,e=1,n=1,i=1,r=1,s=1){super(),this.type="BoxGeometry",this.parameters={width:t,height:e,depth:n,widthSegments:i,heightSegments:r,depthSegments:s};const a=this;i=Math.floor(i),r=Math.floor(r),s=Math.floor(s);const o=[],l=[],c=[],h=[];let u=0,d=0;function p(t,e,n,i,r,s,p,m,f,g,v){const _=s/f,x=p/g,y=s/2,M=p/2,S=m/2,b=f+1,w=g+1;let T=0,E=0;const A=new Li;for(let s=0;s0?1:-1,c.push(A.x,A.y,A.z),h.push(o/f),h.push(1-s/g),T+=1}}for(let t=0;t0&&(e.defines=this.defines),e.vertexShader=this.vertexShader,e.fragmentShader=this.fragmentShader,e.lights=this.lights,e.clipping=this.clipping;const n={};for(const t in this.extensions)!0===this.extensions[t]&&(n[t]=!0);return Object.keys(n).length>0&&(e.extensions=n),e}}class Zs extends Dr{constructor(){super(),this.isCamera=!0,this.type="Camera",this.matrixWorldInverse=new lr,this.projectionMatrix=new lr,this.projectionMatrixInverse=new lr,this.coordinateSystem=kn}copy(t,e){return super.copy(t,e),this.matrixWorldInverse.copy(t.matrixWorldInverse),this.projectionMatrix.copy(t.projectionMatrix),this.projectionMatrixInverse.copy(t.projectionMatrixInverse),this.coordinateSystem=t.coordinateSystem,this}getWorldDirection(t){return super.getWorldDirection(t).negate()}updateMatrixWorld(t){super.updateMatrixWorld(t),this.matrixWorldInverse.copy(this.matrixWorld).invert()}updateWorldMatrix(t,e){super.updateWorldMatrix(t,e),this.matrixWorldInverse.copy(this.matrixWorld).invert()}clone(){return(new this.constructor).copy(this)}}const Js=new Li,Ks=new ti,$s=new ti;class Qs extends Zs{constructor(t=50,e=1,n=.1,i=2e3){super(),this.isPerspectiveCamera=!0,this.type="PerspectiveCamera",this.fov=t,this.zoom=1,this.near=n,this.far=i,this.focus=10,this.aspect=e,this.view=null,this.filmGauge=35,this.filmOffset=0,this.updateProjectionMatrix()}copy(t,e){return super.copy(t,e),this.fov=t.fov,this.zoom=t.zoom,this.near=t.near,this.far=t.far,this.focus=t.focus,this.aspect=t.aspect,this.view=null===t.view?null:Object.assign({},t.view),this.filmGauge=t.filmGauge,this.filmOffset=t.filmOffset,this}setFocalLength(t){const e=.5*this.getFilmHeight()/t;this.fov=2*jn*Math.atan(e),this.updateProjectionMatrix()}getFocalLength(){const t=Math.tan(.5*Xn*this.fov);return.5*this.getFilmHeight()/t}getEffectiveFOV(){return 2*jn*Math.atan(Math.tan(.5*Xn*this.fov)/this.zoom)}getFilmWidth(){return this.filmGauge*Math.min(this.aspect,1)}getFilmHeight(){return this.filmGauge/Math.max(this.aspect,1)}getViewBounds(t,e,n){Js.set(-1,-1,.5).applyMatrix4(this.projectionMatrixInverse),e.set(Js.x,Js.y).multiplyScalar(-t/Js.z),Js.set(1,1,.5).applyMatrix4(this.projectionMatrixInverse),n.set(Js.x,Js.y).multiplyScalar(-t/Js.z)}getViewSize(t,e){return this.getViewBounds(t,Ks,$s),e.subVectors($s,Ks)}setViewOffset(t,e,n,i,r,s){this.aspect=t/e,null===this.view&&(this.view={enabled:!0,fullWidth:1,fullHeight:1,offsetX:0,offsetY:0,width:1,height:1}),this.view.enabled=!0,this.view.fullWidth=t,this.view.fullHeight=e,this.view.offsetX=n,this.view.offsetY=i,this.view.width=r,this.view.height=s,this.updateProjectionMatrix()}clearViewOffset(){null!==this.view&&(this.view.enabled=!1),this.updateProjectionMatrix()}updateProjectionMatrix(){const t=this.near;let e=t*Math.tan(.5*Xn*this.fov)/this.zoom,n=2*e,i=this.aspect*n,r=-.5*i;const s=this.view;if(null!==this.view&&this.view.enabled){const t=s.fullWidth,a=s.fullHeight;r+=s.offsetX*i/t,e-=s.offsetY*n/a,i*=s.width/t,n*=s.height/a}const a=this.filmOffset;0!==a&&(r+=t*a/this.getFilmWidth()),this.projectionMatrix.makePerspective(r,r+i,e,e-n,t,this.far,this.coordinateSystem),this.projectionMatrixInverse.copy(this.projectionMatrix).invert()}toJSON(t){const e=super.toJSON(t);return e.object.fov=this.fov,e.object.zoom=this.zoom,e.object.near=this.near,e.object.far=this.far,e.object.focus=this.focus,e.object.aspect=this.aspect,null!==this.view&&(e.object.view=Object.assign({},this.view)),e.object.filmGauge=this.filmGauge,e.object.filmOffset=this.filmOffset,e}}const ta=-90;class ea extends Dr{constructor(t,e,n){super(),this.type="CubeCamera",this.renderTarget=n,this.coordinateSystem=null,this.activeMipmapLevel=0;const i=new Qs(ta,1,t,e);i.layers=this.layers,this.add(i);const r=new Qs(ta,1,t,e);r.layers=this.layers,this.add(r);const s=new Qs(ta,1,t,e);s.layers=this.layers,this.add(s);const a=new Qs(ta,1,t,e);a.layers=this.layers,this.add(a);const o=new Qs(ta,1,t,e);o.layers=this.layers,this.add(o);const l=new Qs(ta,1,t,e);l.layers=this.layers,this.add(l)}updateCoordinateSystem(){const t=this.coordinateSystem,e=this.children.concat(),[n,i,r,s,a,o]=e;for(const t of e)this.remove(t);if(t===kn)n.up.set(0,1,0),n.lookAt(1,0,0),i.up.set(0,1,0),i.lookAt(-1,0,0),r.up.set(0,0,-1),r.lookAt(0,1,0),s.up.set(0,0,1),s.lookAt(0,-1,0),a.up.set(0,1,0),a.lookAt(0,0,1),o.up.set(0,1,0),o.lookAt(0,0,-1);else{if(t!==Vn)throw new Error("THREE.CubeCamera.updateCoordinateSystem(): Invalid coordinate system: "+t);n.up.set(0,-1,0),n.lookAt(-1,0,0),i.up.set(0,-1,0),i.lookAt(1,0,0),r.up.set(0,0,1),r.lookAt(0,1,0),s.up.set(0,0,-1),s.lookAt(0,-1,0),a.up.set(0,-1,0),a.lookAt(0,0,1),o.up.set(0,-1,0),o.lookAt(0,0,-1)}for(const t of e)this.add(t),t.updateMatrixWorld()}update(t,e){null===this.parent&&this.updateMatrixWorld();const{renderTarget:n,activeMipmapLevel:i}=this;this.coordinateSystem!==t.coordinateSystem&&(this.coordinateSystem=t.coordinateSystem,this.updateCoordinateSystem());const[r,s,a,o,l,c]=this.children,h=t.getRenderTarget(),u=t.getActiveCubeFace(),d=t.getActiveMipmapLevel(),p=t.xr.enabled;t.xr.enabled=!1;const m=n.texture.generateMipmaps;n.texture.generateMipmaps=!1,t.setRenderTarget(n,0,i),t.render(e,r),t.setRenderTarget(n,1,i),t.render(e,s),t.setRenderTarget(n,2,i),t.render(e,a),t.setRenderTarget(n,3,i),t.render(e,o),t.setRenderTarget(n,4,i),t.render(e,l),n.texture.generateMipmaps=m,t.setRenderTarget(n,5,i),t.render(e,c),t.setRenderTarget(h,u,d),t.xr.enabled=p,n.texture.needsPMREMUpdate=!0}}class na extends bi{constructor(t,e,n,i,r,s,a,o,l,c){super(t=void 0!==t?t:[],e=void 0!==e?e:lt,n,i,r,s,a,o,l,c),this.isCubeTexture=!0,this.flipY=!1}get images(){return this.image}set images(t){this.image=t}}class ia extends Ei{constructor(t=1,e={}){super(t,t,e),this.isWebGLCubeRenderTarget=!0;const n={width:t,height:t,depth:1},i=[n,n,n,n,n,n];this.texture=new na(i,e.mapping,e.wrapS,e.wrapT,e.magFilter,e.minFilter,e.format,e.type,e.anisotropy,e.colorSpace),this.texture.isRenderTargetTexture=!0,this.texture.generateMipmaps=void 0!==e.generateMipmaps&&e.generateMipmaps,this.texture.minFilter=void 0!==e.minFilter?e.minFilter:Mt}fromEquirectangularTexture(t,e){this.texture.type=e.type,this.texture.colorSpace=e.colorSpace,this.texture.generateMipmaps=e.generateMipmaps,this.texture.minFilter=e.minFilter,this.texture.magFilter=e.magFilter;const n={uniforms:{tEquirect:{value:null}},vertexShader:"\n\n\t\t\t\tvarying vec3 vWorldDirection;\n\n\t\t\t\tvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\n\t\t\t\t\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n\n\t\t\t\t}\n\n\t\t\t\tvoid main() {\n\n\t\t\t\t\tvWorldDirection = transformDirection( position, modelMatrix );\n\n\t\t\t\t\t#include \n\t\t\t\t\t#include \n\n\t\t\t\t}\n\t\t\t",fragmentShader:"\n\n\t\t\t\tuniform sampler2D tEquirect;\n\n\t\t\t\tvarying vec3 vWorldDirection;\n\n\t\t\t\t#include \n\n\t\t\t\tvoid main() {\n\n\t\t\t\t\tvec3 direction = normalize( vWorldDirection );\n\n\t\t\t\t\tvec2 sampleUV = equirectUv( direction );\n\n\t\t\t\t\tgl_FragColor = texture2D( tEquirect, sampleUV );\n\n\t\t\t\t}\n\t\t\t"},i=new Gs(5,5,5),r=new Ys({name:"CubemapFromEquirect",uniforms:Ws(n.uniforms),vertexShader:n.vertexShader,fragmentShader:n.fragmentShader,side:d,blending:0});r.uniforms.tEquirect.value=e;const s=new Vs(i,r),a=e.minFilter;e.minFilter===wt&&(e.minFilter=Mt);return new ea(1,10,this).update(t,s),e.minFilter=a,s.geometry.dispose(),s.material.dispose(),this}clear(t,e,n,i){const r=t.getRenderTarget();for(let r=0;r<6;r++)t.setRenderTarget(this,r),t.clear(e,n,i);t.setRenderTarget(r)}}const ra=new Li,sa=new Li,aa=new ei;class oa{constructor(t=new Li(1,0,0),e=0){this.isPlane=!0,this.normal=t,this.constant=e}set(t,e){return this.normal.copy(t),this.constant=e,this}setComponents(t,e,n,i){return this.normal.set(t,e,n),this.constant=i,this}setFromNormalAndCoplanarPoint(t,e){return this.normal.copy(t),this.constant=-e.dot(this.normal),this}setFromCoplanarPoints(t,e,n){const i=ra.subVectors(n,e).cross(sa.subVectors(t,e)).normalize();return this.setFromNormalAndCoplanarPoint(i,t),this}copy(t){return this.normal.copy(t.normal),this.constant=t.constant,this}normalize(){const t=1/this.normal.length();return this.normal.multiplyScalar(t),this.constant*=t,this}negate(){return this.constant*=-1,this.normal.negate(),this}distanceToPoint(t){return this.normal.dot(t)+this.constant}distanceToSphere(t){return this.distanceToPoint(t.center)-t.radius}projectPoint(t,e){return e.copy(t).addScaledVector(this.normal,-this.distanceToPoint(t))}intersectLine(t,e){const n=t.delta(ra),i=this.normal.dot(n);if(0===i)return 0===this.distanceToPoint(t.start)?e.copy(t.start):null;const r=-(t.start.dot(this.normal)+this.constant)/i;return r<0||r>1?null:e.copy(t.start).addScaledVector(n,r)}intersectsLine(t){const e=this.distanceToPoint(t.start),n=this.distanceToPoint(t.end);return e<0&&n>0||n<0&&e>0}intersectsBox(t){return t.intersectsPlane(this)}intersectsSphere(t){return t.intersectsPlane(this)}coplanarPoint(t){return t.copy(this.normal).multiplyScalar(-this.constant)}applyMatrix4(t,e){const n=e||aa.getNormalMatrix(t),i=this.coplanarPoint(ra).applyMatrix4(t),r=this.normal.applyMatrix3(n).normalize();return this.constant=-i.dot(r),this}translate(t){return this.constant-=t.dot(this.normal),this}equals(t){return t.normal.equals(this.normal)&&t.constant===this.constant}clone(){return(new this.constructor).copy(this)}}const la=new Qi,ca=new Li;class ha{constructor(t=new oa,e=new oa,n=new oa,i=new oa,r=new oa,s=new oa){this.planes=[t,e,n,i,r,s]}set(t,e,n,i,r,s){const a=this.planes;return a[0].copy(t),a[1].copy(e),a[2].copy(n),a[3].copy(i),a[4].copy(r),a[5].copy(s),this}copy(t){const e=this.planes;for(let n=0;n<6;n++)e[n].copy(t.planes[n]);return this}setFromProjectionMatrix(t,e=2e3){const n=this.planes,i=t.elements,r=i[0],s=i[1],a=i[2],o=i[3],l=i[4],c=i[5],h=i[6],u=i[7],d=i[8],p=i[9],m=i[10],f=i[11],g=i[12],v=i[13],_=i[14],x=i[15];if(n[0].setComponents(o-r,u-l,f-d,x-g).normalize(),n[1].setComponents(o+r,u+l,f+d,x+g).normalize(),n[2].setComponents(o+s,u+c,f+p,x+v).normalize(),n[3].setComponents(o-s,u-c,f-p,x-v).normalize(),n[4].setComponents(o-a,u-h,f-m,x-_).normalize(),e===kn)n[5].setComponents(o+a,u+h,f+m,x+_).normalize();else{if(e!==Vn)throw new Error("THREE.Frustum.setFromProjectionMatrix(): Invalid coordinate system: "+e);n[5].setComponents(a,h,m,_).normalize()}return this}intersectsObject(t){if(void 0!==t.boundingSphere)null===t.boundingSphere&&t.computeBoundingSphere(),la.copy(t.boundingSphere).applyMatrix4(t.matrixWorld);else{const e=t.geometry;null===e.boundingSphere&&e.computeBoundingSphere(),la.copy(e.boundingSphere).applyMatrix4(t.matrixWorld)}return this.intersectsSphere(la)}intersectsSprite(t){return la.center.set(0,0,0),la.radius=.7071067811865476,la.applyMatrix4(t.matrixWorld),this.intersectsSphere(la)}intersectsSphere(t){const e=this.planes,n=t.center,i=-t.radius;for(let t=0;t<6;t++){if(e[t].distanceToPoint(n)0?t.max.x:t.min.x,ca.y=i.normal.y>0?t.max.y:t.min.y,ca.z=i.normal.z>0?t.max.z:t.min.z,i.distanceToPoint(ca)<0)return!1}return!0}containsPoint(t){const e=this.planes;for(let n=0;n<6;n++)if(e[n].distanceToPoint(t)<0)return!1;return!0}clone(){return(new this.constructor).copy(this)}}function ua(){let t=null,e=!1,n=null,i=null;function r(e,s){n(e,s),i=t.requestAnimationFrame(r)}return{start:function(){!0!==e&&null!==n&&(i=t.requestAnimationFrame(r),e=!0)},stop:function(){t.cancelAnimationFrame(i),e=!1},setAnimationLoop:function(t){n=t},setContext:function(e){t=e}}}function da(t){const e=new WeakMap;return{get:function(t){return t.isInterleavedBufferAttribute&&(t=t.data),e.get(t)},remove:function(n){n.isInterleavedBufferAttribute&&(n=n.data);const i=e.get(n);i&&(t.deleteBuffer(i.buffer),e.delete(n))},update:function(n,i){if(n.isInterleavedBufferAttribute&&(n=n.data),n.isGLBufferAttribute){const t=e.get(n);return void((!t||t.versiont.start-e.start));let e=0;for(let t=1;t 0\n\tvec4 plane;\n\t#ifdef ALPHA_TO_COVERAGE\n\t\tfloat distanceToPlane, distanceGradient;\n\t\tfloat clipOpacity = 1.0;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tdistanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;\n\t\t\tdistanceGradient = fwidth( distanceToPlane ) / 2.0;\n\t\t\tclipOpacity *= smoothstep( - distanceGradient, distanceGradient, distanceToPlane );\n\t\t\tif ( clipOpacity == 0.0 ) discard;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\t\tfloat unionClipOpacity = 1.0;\n\t\t\t#pragma unroll_loop_start\n\t\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\t\tplane = clippingPlanes[ i ];\n\t\t\t\tdistanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;\n\t\t\t\tdistanceGradient = fwidth( distanceToPlane ) / 2.0;\n\t\t\t\tunionClipOpacity *= 1.0 - smoothstep( - distanceGradient, distanceGradient, distanceToPlane );\n\t\t\t}\n\t\t\t#pragma unroll_loop_end\n\t\t\tclipOpacity *= 1.0 - unionClipOpacity;\n\t\t#endif\n\t\tdiffuseColor.a *= clipOpacity;\n\t\tif ( diffuseColor.a == 0.0 ) discard;\n\t#else\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\t\tbool clipped = true;\n\t\t\t#pragma unroll_loop_start\n\t\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\t\tplane = clippingPlanes[ i ];\n\t\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t\t}\n\t\t\t#pragma unroll_loop_end\n\t\t\tif ( clipped ) discard;\n\t\t#endif\n\t#endif\n#endif",clipping_planes_pars_fragment:"#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif",clipping_planes_pars_vertex:"#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif",clipping_planes_vertex:"#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif",color_fragment:"#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif",color_pars_fragment:"#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif",color_pars_vertex:"#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) || defined( USE_BATCHING_COLOR )\n\tvarying vec3 vColor;\n#endif",color_vertex:"#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) || defined( USE_BATCHING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif\n#ifdef USE_BATCHING_COLOR\n\tvec3 batchingColor = getBatchingColor( getIndirectIndex( gl_DrawID ) );\n\tvColor.xyz *= batchingColor.xyz;\n#endif",common:"#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nvec3 pow2( const in vec3 x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 v ) { return dot( v, vec3( 0.3333333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\n#ifdef USE_ALPHAHASH\n\tvarying vec3 vPosition;\n#endif\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}\nvec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat F_Schlick( const in float f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n} // validated",cube_uv_reflection_fragment:"#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\thighp vec2 uv = getUV( direction, face ) * ( faceSize - 2.0 ) + 1.0;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tuv.x += filterInt * 3.0 * cubeUV_minTileSize;\n\t\tuv.y += 4.0 * ( exp2( CUBEUV_MAX_MIP ) - faceSize );\n\t\tuv.x *= CUBEUV_TEXEL_WIDTH;\n\t\tuv.y *= CUBEUV_TEXEL_HEIGHT;\n\t\t#ifdef texture2DGradEXT\n\t\t\treturn texture2DGradEXT( envMap, uv, vec2( 0.0 ), vec2( 0.0 ) ).rgb;\n\t\t#else\n\t\t\treturn texture2D( envMap, uv ).rgb;\n\t\t#endif\n\t}\n\t#define cubeUV_r0 1.0\n\t#define cubeUV_m0 - 2.0\n\t#define cubeUV_r1 0.8\n\t#define cubeUV_m1 - 1.0\n\t#define cubeUV_r4 0.4\n\t#define cubeUV_m4 2.0\n\t#define cubeUV_r5 0.305\n\t#define cubeUV_m5 3.0\n\t#define cubeUV_r6 0.21\n\t#define cubeUV_m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= cubeUV_r1 ) {\n\t\t\tmip = ( cubeUV_r0 - roughness ) * ( cubeUV_m1 - cubeUV_m0 ) / ( cubeUV_r0 - cubeUV_r1 ) + cubeUV_m0;\n\t\t} else if ( roughness >= cubeUV_r4 ) {\n\t\t\tmip = ( cubeUV_r1 - roughness ) * ( cubeUV_m4 - cubeUV_m1 ) / ( cubeUV_r1 - cubeUV_r4 ) + cubeUV_m1;\n\t\t} else if ( roughness >= cubeUV_r5 ) {\n\t\t\tmip = ( cubeUV_r4 - roughness ) * ( cubeUV_m5 - cubeUV_m4 ) / ( cubeUV_r4 - cubeUV_r5 ) + cubeUV_m4;\n\t\t} else if ( roughness >= cubeUV_r6 ) {\n\t\t\tmip = ( cubeUV_r5 - roughness ) * ( cubeUV_m6 - cubeUV_m5 ) / ( cubeUV_r5 - cubeUV_r6 ) + cubeUV_m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), cubeUV_m0, CUBEUV_MAX_MIP );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif",defaultnormal_vertex:"vec3 transformedNormal = objectNormal;\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = objectTangent;\n#endif\n#ifdef USE_BATCHING\n\tmat3 bm = mat3( batchingMatrix );\n\ttransformedNormal /= vec3( dot( bm[ 0 ], bm[ 0 ] ), dot( bm[ 1 ], bm[ 1 ] ), dot( bm[ 2 ], bm[ 2 ] ) );\n\ttransformedNormal = bm * transformedNormal;\n\t#ifdef USE_TANGENT\n\t\ttransformedTangent = bm * transformedTangent;\n\t#endif\n#endif\n#ifdef USE_INSTANCING\n\tmat3 im = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( im[ 0 ], im[ 0 ] ), dot( im[ 1 ], im[ 1 ] ), dot( im[ 2 ], im[ 2 ] ) );\n\ttransformedNormal = im * transformedNormal;\n\t#ifdef USE_TANGENT\n\t\ttransformedTangent = im * transformedTangent;\n\t#endif\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\ttransformedTangent = ( modelViewMatrix * vec4( transformedTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif",displacementmap_pars_vertex:"#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif",displacementmap_vertex:"#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vDisplacementMapUv ).x * displacementScale + displacementBias );\n#endif",emissivemap_fragment:"#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vEmissiveMapUv );\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif",emissivemap_pars_fragment:"#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif",colorspace_fragment:"gl_FragColor = linearToOutputTexel( gl_FragColor );",colorspace_pars_fragment:"\nconst mat3 LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 = mat3(\n\tvec3( 0.8224621, 0.177538, 0.0 ),\n\tvec3( 0.0331941, 0.9668058, 0.0 ),\n\tvec3( 0.0170827, 0.0723974, 0.9105199 )\n);\nconst mat3 LINEAR_DISPLAY_P3_TO_LINEAR_SRGB = mat3(\n\tvec3( 1.2249401, - 0.2249404, 0.0 ),\n\tvec3( - 0.0420569, 1.0420571, 0.0 ),\n\tvec3( - 0.0196376, - 0.0786361, 1.0982735 )\n);\nvec4 LinearSRGBToLinearDisplayP3( in vec4 value ) {\n\treturn vec4( value.rgb * LINEAR_SRGB_TO_LINEAR_DISPLAY_P3, value.a );\n}\nvec4 LinearDisplayP3ToLinearSRGB( in vec4 value ) {\n\treturn vec4( value.rgb * LINEAR_DISPLAY_P3_TO_LINEAR_SRGB, value.a );\n}\nvec4 LinearTransferOETF( in vec4 value ) {\n\treturn value;\n}\nvec4 sRGBTransferOETF( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}",envmap_fragment:"#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, envMapRotation * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif",envmap_common_pars_fragment:"#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform mat3 envMapRotation;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif",envmap_pars_fragment:"#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif",envmap_pars_vertex:"#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif",envmap_physical_pars_fragment:"#ifdef USE_ENVMAP\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#ifdef ENVMAP_TYPE_CUBE_UV\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, envMapRotation * worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#ifdef ENVMAP_TYPE_CUBE_UV\n\t\t\tvec3 reflectVec = reflect( - viewDir, normal );\n\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, envMapRotation * reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\t#ifdef USE_ANISOTROPY\n\t\tvec3 getIBLAnisotropyRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in vec3 bitangent, const in float anisotropy ) {\n\t\t\t#ifdef ENVMAP_TYPE_CUBE_UV\n\t\t\t\tvec3 bentNormal = cross( bitangent, viewDir );\n\t\t\t\tbentNormal = normalize( cross( bentNormal, bitangent ) );\n\t\t\t\tbentNormal = normalize( mix( bentNormal, normal, pow2( pow2( 1.0 - anisotropy * ( 1.0 - roughness ) ) ) ) );\n\t\t\t\treturn getIBLRadiance( viewDir, bentNormal, roughness );\n\t\t\t#else\n\t\t\t\treturn vec3( 0.0 );\n\t\t\t#endif\n\t\t}\n\t#endif\n#endif",envmap_vertex:"#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif",fog_vertex:"#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif",fog_pars_vertex:"#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif",fog_fragment:"#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif",fog_pars_fragment:"#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif",gradientmap_pars_fragment:"#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn vec3( texture2D( gradientMap, coord ).r );\n\t#else\n\t\tvec2 fw = fwidth( coord ) * 0.5;\n\t\treturn mix( vec3( 0.7 ), vec3( 1.0 ), smoothstep( 0.7 - fw.x, 0.7 + fw.x, coord.x ) );\n\t#endif\n}",lightmap_pars_fragment:"#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif",lights_lambert_fragment:"LambertMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularStrength = specularStrength;",lights_lambert_pars_fragment:"varying vec3 vViewPosition;\nstruct LambertMaterial {\n\tvec3 diffuseColor;\n\tfloat specularStrength;\n};\nvoid RE_Direct_Lambert( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Lambert( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Lambert\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Lambert",lights_pars_begin:"uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\n#if defined( USE_LIGHT_PROBES )\n\tuniform vec3 lightProbe[ 9 ];\n#endif\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif ( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in vec3 geometryPosition, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometryPosition;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in vec3 geometryPosition, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometryPosition;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif",lights_toon_fragment:"ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;",lights_toon_pars_fragment:"varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometryNormal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon",lights_phong_fragment:"BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;",lights_phong_pars_fragment:"varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometryViewDir, geometryNormal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong",lights_physical_fragment:"PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( nonPerturbedNormal ) ), abs( dFdy( nonPerturbedNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\tmaterial.ior = ior;\n\t#ifdef USE_SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularColorFactor = specularColor;\n\t\t#ifdef USE_SPECULAR_COLORMAP\n\t\t\tspecularColorFactor *= texture2D( specularColorMap, vSpecularColorMapUv ).rgb;\n\t\t#endif\n\t\t#ifdef USE_SPECULAR_INTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vSpecularIntensityMapUv ).a;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularColorFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( material.ior - 1.0 ) / ( material.ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vClearcoatMapUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vClearcoatRoughnessMapUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_DISPERSION\n\tmaterial.dispersion = dispersion;\n#endif\n#ifdef USE_IRIDESCENCE\n\tmaterial.iridescence = iridescence;\n\tmaterial.iridescenceIOR = iridescenceIOR;\n\t#ifdef USE_IRIDESCENCEMAP\n\t\tmaterial.iridescence *= texture2D( iridescenceMap, vIridescenceMapUv ).r;\n\t#endif\n\t#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\t\tmaterial.iridescenceThickness = (iridescenceThicknessMaximum - iridescenceThicknessMinimum) * texture2D( iridescenceThicknessMap, vIridescenceThicknessMapUv ).g + iridescenceThicknessMinimum;\n\t#else\n\t\tmaterial.iridescenceThickness = iridescenceThicknessMaximum;\n\t#endif\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheenColor;\n\t#ifdef USE_SHEEN_COLORMAP\n\t\tmaterial.sheenColor *= texture2D( sheenColorMap, vSheenColorMapUv ).rgb;\n\t#endif\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n\t#ifdef USE_SHEEN_ROUGHNESSMAP\n\t\tmaterial.sheenRoughness *= texture2D( sheenRoughnessMap, vSheenRoughnessMapUv ).a;\n\t#endif\n#endif\n#ifdef USE_ANISOTROPY\n\t#ifdef USE_ANISOTROPYMAP\n\t\tmat2 anisotropyMat = mat2( anisotropyVector.x, anisotropyVector.y, - anisotropyVector.y, anisotropyVector.x );\n\t\tvec3 anisotropyPolar = texture2D( anisotropyMap, vAnisotropyMapUv ).rgb;\n\t\tvec2 anisotropyV = anisotropyMat * normalize( 2.0 * anisotropyPolar.rg - vec2( 1.0 ) ) * anisotropyPolar.b;\n\t#else\n\t\tvec2 anisotropyV = anisotropyVector;\n\t#endif\n\tmaterial.anisotropy = length( anisotropyV );\n\tif( material.anisotropy == 0.0 ) {\n\t\tanisotropyV = vec2( 1.0, 0.0 );\n\t} else {\n\t\tanisotropyV /= material.anisotropy;\n\t\tmaterial.anisotropy = saturate( material.anisotropy );\n\t}\n\tmaterial.alphaT = mix( pow2( material.roughness ), 1.0, pow2( material.anisotropy ) );\n\tmaterial.anisotropyT = tbn[ 0 ] * anisotropyV.x + tbn[ 1 ] * anisotropyV.y;\n\tmaterial.anisotropyB = tbn[ 1 ] * anisotropyV.x - tbn[ 0 ] * anisotropyV.y;\n#endif",lights_physical_pars_fragment:"struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\tfloat dispersion;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_IRIDESCENCE\n\t\tfloat iridescence;\n\t\tfloat iridescenceIOR;\n\t\tfloat iridescenceThickness;\n\t\tvec3 iridescenceFresnel;\n\t\tvec3 iridescenceF0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenColor;\n\t\tfloat sheenRoughness;\n\t#endif\n\t#ifdef IOR\n\t\tfloat ior;\n\t#endif\n\t#ifdef USE_TRANSMISSION\n\t\tfloat transmission;\n\t\tfloat transmissionAlpha;\n\t\tfloat thickness;\n\t\tfloat attenuationDistance;\n\t\tvec3 attenuationColor;\n\t#endif\n\t#ifdef USE_ANISOTROPY\n\t\tfloat anisotropy;\n\t\tfloat alphaT;\n\t\tvec3 anisotropyT;\n\t\tvec3 anisotropyB;\n\t#endif\n};\nvec3 clearcoatSpecularDirect = vec3( 0.0 );\nvec3 clearcoatSpecularIndirect = vec3( 0.0 );\nvec3 sheenSpecularDirect = vec3( 0.0 );\nvec3 sheenSpecularIndirect = vec3(0.0 );\nvec3 Schlick_to_F0( const in vec3 f, const in float f90, const in float dotVH ) {\n float x = clamp( 1.0 - dotVH, 0.0, 1.0 );\n float x2 = x * x;\n float x5 = clamp( x * x2 * x2, 0.0, 0.9999 );\n return ( f - vec3( f90 ) * x5 ) / ( 1.0 - x5 );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\n#ifdef USE_ANISOTROPY\n\tfloat V_GGX_SmithCorrelated_Anisotropic( const in float alphaT, const in float alphaB, const in float dotTV, const in float dotBV, const in float dotTL, const in float dotBL, const in float dotNV, const in float dotNL ) {\n\t\tfloat gv = dotNL * length( vec3( alphaT * dotTV, alphaB * dotBV, dotNV ) );\n\t\tfloat gl = dotNV * length( vec3( alphaT * dotTL, alphaB * dotBL, dotNL ) );\n\t\tfloat v = 0.5 / ( gv + gl );\n\t\treturn saturate(v);\n\t}\n\tfloat D_GGX_Anisotropic( const in float alphaT, const in float alphaB, const in float dotNH, const in float dotTH, const in float dotBH ) {\n\t\tfloat a2 = alphaT * alphaB;\n\t\thighp vec3 v = vec3( alphaB * dotTH, alphaT * dotBH, a2 * dotNH );\n\t\thighp float v2 = dot( v, v );\n\t\tfloat w2 = a2 / v2;\n\t\treturn RECIPROCAL_PI * a2 * pow2 ( w2 );\n\t}\n#endif\n#ifdef USE_CLEARCOAT\n\tvec3 BRDF_GGX_Clearcoat( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material) {\n\t\tvec3 f0 = material.clearcoatF0;\n\t\tfloat f90 = material.clearcoatF90;\n\t\tfloat roughness = material.clearcoatRoughness;\n\t\tfloat alpha = pow2( roughness );\n\t\tvec3 halfDir = normalize( lightDir + viewDir );\n\t\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\t\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\t\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\t\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\t\tvec3 F = F_Schlick( f0, f90, dotVH );\n\t\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\t\tfloat D = D_GGX( alpha, dotNH );\n\t\treturn F * ( V * D );\n\t}\n#endif\nvec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material ) {\n\tvec3 f0 = material.specularColor;\n\tfloat f90 = material.specularF90;\n\tfloat roughness = material.roughness;\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\t#ifdef USE_IRIDESCENCE\n\t\tF = mix( F, material.iridescenceFresnel, material.iridescence );\n\t#endif\n\t#ifdef USE_ANISOTROPY\n\t\tfloat dotTL = dot( material.anisotropyT, lightDir );\n\t\tfloat dotTV = dot( material.anisotropyT, viewDir );\n\t\tfloat dotTH = dot( material.anisotropyT, halfDir );\n\t\tfloat dotBL = dot( material.anisotropyB, lightDir );\n\t\tfloat dotBV = dot( material.anisotropyB, viewDir );\n\t\tfloat dotBH = dot( material.anisotropyB, halfDir );\n\t\tfloat V = V_GGX_SmithCorrelated_Anisotropic( material.alphaT, alpha, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL );\n\t\tfloat D = D_GGX_Anisotropic( material.alphaT, alpha, dotNH, dotTH, dotBH );\n\t#else\n\t\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\t\tfloat D = D_GGX( alpha, dotNH );\n\t#endif\n\treturn F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenColor * ( D * V );\n}\n#endif\nfloat IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat r2 = roughness * roughness;\n\tfloat a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95;\n\tfloat b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72;\n\tfloat DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) );\n\treturn saturate( DG * RECIPROCAL_PI );\n}\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\n#ifdef USE_IRIDESCENCE\nvoid computeMultiscatteringIridescence( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float iridescence, const in vec3 iridescenceF0, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#else\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#endif\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\t#ifdef USE_IRIDESCENCE\n\t\tvec3 Fr = mix( specularColor, iridescenceF0, iridescence );\n\t#else\n\t\tvec3 Fr = specularColor;\n\t#endif\n\tvec3 FssEss = Fr * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = Fr + ( 1.0 - Fr ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometryNormal;\n\t\tvec3 viewDir = geometryViewDir;\n\t\tvec3 position = geometryPosition;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometryClearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecularDirect += ccIrradiance * BRDF_GGX_Clearcoat( directLight.direction, geometryViewDir, geometryClearcoatNormal, material );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecularDirect += irradiance * BRDF_Sheen( directLight.direction, geometryViewDir, geometryNormal, material.sheenColor, material.sheenRoughness );\n\t#endif\n\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometryViewDir, geometryNormal, material );\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecularIndirect += clearcoatRadiance * EnvironmentBRDF( geometryClearcoatNormal, geometryViewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecularIndirect += irradiance * material.sheenColor * IBLSheenBRDF( geometryNormal, geometryViewDir, material.sheenRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\t#ifdef USE_IRIDESCENCE\n\t\tcomputeMultiscatteringIridescence( geometryNormal, geometryViewDir, material.specularColor, material.specularF90, material.iridescence, material.iridescenceFresnel, material.roughness, singleScattering, multiScattering );\n\t#else\n\t\tcomputeMultiscattering( geometryNormal, geometryViewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\t#endif\n\tvec3 totalScattering = singleScattering + multiScattering;\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - max( max( totalScattering.r, totalScattering.g ), totalScattering.b ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}",lights_fragment_begin:"\nvec3 geometryPosition = - vViewPosition;\nvec3 geometryNormal = normal;\nvec3 geometryViewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\nvec3 geometryClearcoatNormal = vec3( 0.0 );\n#ifdef USE_CLEARCOAT\n\tgeometryClearcoatNormal = clearcoatNormal;\n#endif\n#ifdef USE_IRIDESCENCE\n\tfloat dotNVi = saturate( dot( normal, geometryViewDir ) );\n\tif ( material.iridescenceThickness == 0.0 ) {\n\t\tmaterial.iridescence = 0.0;\n\t} else {\n\t\tmaterial.iridescence = saturate( material.iridescence );\n\t}\n\tif ( material.iridescence > 0.0 ) {\n\t\tmaterial.iridescenceFresnel = evalIridescence( 1.0, material.iridescenceIOR, dotNVi, material.iridescenceThickness, material.specularColor );\n\t\tmaterial.iridescenceF0 = Schlick_to_F0( material.iridescenceFresnel, 1.0, dotNVi );\n\t}\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometryPosition, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= ( directLight.visible && receiveShadow ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowIntensity, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\tvec4 spotColor;\n\tvec3 spotLightCoord;\n\tbool inSpotLightMap;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometryPosition, directLight );\n\t\t#if ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )\n\t\t#define SPOT_LIGHT_MAP_INDEX UNROLLED_LOOP_INDEX\n\t\t#elif ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\t#define SPOT_LIGHT_MAP_INDEX NUM_SPOT_LIGHT_MAPS\n\t\t#else\n\t\t#define SPOT_LIGHT_MAP_INDEX ( UNROLLED_LOOP_INDEX - NUM_SPOT_LIGHT_SHADOWS + NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )\n\t\t#endif\n\t\t#if ( SPOT_LIGHT_MAP_INDEX < NUM_SPOT_LIGHT_MAPS )\n\t\t\tspotLightCoord = vSpotLightCoord[ i ].xyz / vSpotLightCoord[ i ].w;\n\t\t\tinSpotLightMap = all( lessThan( abs( spotLightCoord * 2. - 1. ), vec3( 1.0 ) ) );\n\t\t\tspotColor = texture2D( spotLightMap[ SPOT_LIGHT_MAP_INDEX ], spotLightCoord.xy );\n\t\t\tdirectLight.color = inSpotLightMap ? directLight.color * spotColor.rgb : directLight.color;\n\t\t#endif\n\t\t#undef SPOT_LIGHT_MAP_INDEX\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowIntensity, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowIntensity, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\t#if defined( USE_LIGHT_PROBES )\n\t\tirradiance += getLightProbeIrradiance( lightProbe, geometryNormal );\n\t#endif\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometryNormal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif",lights_fragment_maps:"#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vLightMapUv );\n\t\tvec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometryNormal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\t#ifdef USE_ANISOTROPY\n\t\tradiance += getIBLAnisotropyRadiance( geometryViewDir, geometryNormal, material.roughness, material.anisotropyB, material.anisotropy );\n\t#else\n\t\tradiance += getIBLRadiance( geometryViewDir, geometryNormal, material.roughness );\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometryViewDir, geometryClearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif",lights_fragment_end:"#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n#endif",logdepthbuf_fragment:"#if defined( USE_LOGDEPTHBUF )\n\tgl_FragDepth = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif",logdepthbuf_pars_fragment:"#if defined( USE_LOGDEPTHBUF )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif",logdepthbuf_pars_vertex:"#ifdef USE_LOGDEPTHBUF\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif",logdepthbuf_vertex:"#ifdef USE_LOGDEPTHBUF\n\tvFragDepth = 1.0 + gl_Position.w;\n\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n#endif",map_fragment:"#ifdef USE_MAP\n\tvec4 sampledDiffuseColor = texture2D( map, vMapUv );\n\t#ifdef DECODE_VIDEO_TEXTURE\n\t\tsampledDiffuseColor = vec4( mix( pow( sampledDiffuseColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), sampledDiffuseColor.rgb * 0.0773993808, vec3( lessThanEqual( sampledDiffuseColor.rgb, vec3( 0.04045 ) ) ) ), sampledDiffuseColor.w );\n\t\n\t#endif\n\tdiffuseColor *= sampledDiffuseColor;\n#endif",map_pars_fragment:"#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif",map_particle_fragment:"#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\t#if defined( USE_POINTS_UV )\n\t\tvec2 uv = vUv;\n\t#else\n\t\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n\t#endif\n#endif\n#ifdef USE_MAP\n\tdiffuseColor *= texture2D( map, uv );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif",map_particle_pars_fragment:"#if defined( USE_POINTS_UV )\n\tvarying vec2 vUv;\n#else\n\t#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\t\tuniform mat3 uvTransform;\n\t#endif\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif",metalnessmap_fragment:"float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vMetalnessMapUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif",metalnessmap_pars_fragment:"#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif",morphinstance_vertex:"#ifdef USE_INSTANCING_MORPH\n\tfloat morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\tfloat morphTargetBaseInfluence = texelFetch( morphTexture, ivec2( 0, gl_InstanceID ), 0 ).r;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\tmorphTargetInfluences[i] = texelFetch( morphTexture, ivec2( i + 1, gl_InstanceID ), 0 ).r;\n\t}\n#endif",morphcolor_vertex:"#if defined( USE_MORPHCOLORS )\n\tvColor *= morphTargetBaseInfluence;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t#if defined( USE_COLOR_ALPHA )\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ) * morphTargetInfluences[ i ];\n\t\t#elif defined( USE_COLOR )\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ).rgb * morphTargetInfluences[ i ];\n\t\t#endif\n\t}\n#endif",morphnormal_vertex:"#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\tif ( morphTargetInfluences[ i ] != 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1 ).xyz * morphTargetInfluences[ i ];\n\t}\n#endif",morphtarget_pars_vertex:"#ifdef USE_MORPHTARGETS\n\t#ifndef USE_INSTANCING_MORPH\n\t\tuniform float morphTargetBaseInfluence;\n\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t#endif\n\tuniform sampler2DArray morphTargetsTexture;\n\tuniform ivec2 morphTargetsTextureSize;\n\tvec4 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset ) {\n\t\tint texelIndex = vertexIndex * MORPHTARGETS_TEXTURE_STRIDE + offset;\n\t\tint y = texelIndex / morphTargetsTextureSize.x;\n\t\tint x = texelIndex - y * morphTargetsTextureSize.x;\n\t\tivec3 morphUV = ivec3( x, y, morphTargetIndex );\n\t\treturn texelFetch( morphTargetsTexture, morphUV, 0 );\n\t}\n#endif",morphtarget_vertex:"#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\tif ( morphTargetInfluences[ i ] != 0.0 ) transformed += getMorph( gl_VertexID, i, 0 ).xyz * morphTargetInfluences[ i ];\n\t}\n#endif",normal_fragment_begin:"float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = dFdx( vViewPosition );\n\tvec3 fdy = dFdy( vViewPosition );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal *= faceDirection;\n\t#endif\n#endif\n#if defined( USE_NORMALMAP_TANGENTSPACE ) || defined( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY )\n\t#ifdef USE_TANGENT\n\t\tmat3 tbn = mat3( normalize( vTangent ), normalize( vBitangent ), normal );\n\t#else\n\t\tmat3 tbn = getTangentFrame( - vViewPosition, normal,\n\t\t#if defined( USE_NORMALMAP )\n\t\t\tvNormalMapUv\n\t\t#elif defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tvClearcoatNormalMapUv\n\t\t#else\n\t\t\tvUv\n\t\t#endif\n\t\t);\n\t#endif\n\t#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )\n\t\ttbn[0] *= faceDirection;\n\t\ttbn[1] *= faceDirection;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\t#ifdef USE_TANGENT\n\t\tmat3 tbn2 = mat3( normalize( vTangent ), normalize( vBitangent ), normal );\n\t#else\n\t\tmat3 tbn2 = getTangentFrame( - vViewPosition, normal, vClearcoatNormalMapUv );\n\t#endif\n\t#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )\n\t\ttbn2[0] *= faceDirection;\n\t\ttbn2[1] *= faceDirection;\n\t#endif\n#endif\nvec3 nonPerturbedNormal = normal;",normal_fragment_maps:"#ifdef USE_NORMALMAP_OBJECTSPACE\n\tnormal = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( USE_NORMALMAP_TANGENTSPACE )\n\tvec3 mapN = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\tnormal = normalize( tbn * mapN );\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif",normal_pars_fragment:"#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif",normal_pars_vertex:"#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif",normal_vertex:"#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif",normalmap_pars_fragment:"#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef USE_NORMALMAP_OBJECTSPACE\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( USE_NORMALMAP_TANGENTSPACE ) || defined ( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY ) )\n\tmat3 getTangentFrame( vec3 eye_pos, vec3 surf_norm, vec2 uv ) {\n\t\tvec3 q0 = dFdx( eye_pos.xyz );\n\t\tvec3 q1 = dFdy( eye_pos.xyz );\n\t\tvec2 st0 = dFdx( uv.st );\n\t\tvec2 st1 = dFdy( uv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : inversesqrt( det );\n\t\treturn mat3( T * scale, B * scale, N );\n\t}\n#endif",clearcoat_normal_fragment_begin:"#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = nonPerturbedNormal;\n#endif",clearcoat_normal_fragment_maps:"#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vClearcoatNormalMapUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\tclearcoatNormal = normalize( tbn2 * clearcoatMapN );\n#endif",clearcoat_pars_fragment:"#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif",iridescence_pars_fragment:"#ifdef USE_IRIDESCENCEMAP\n\tuniform sampler2D iridescenceMap;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tuniform sampler2D iridescenceThicknessMap;\n#endif",opaque_fragment:"#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= material.transmissionAlpha;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );",packing:"vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;const float ShiftRight8 = 1. / 256.;\nconst float Inv255 = 1. / 255.;\nconst vec4 PackFactors = vec4( 1.0, 256.0, 256.0 * 256.0, 256.0 * 256.0 * 256.0 );\nconst vec2 UnpackFactors2 = vec2( UnpackDownscale, 1.0 / PackFactors.g );\nconst vec3 UnpackFactors3 = vec3( UnpackDownscale / PackFactors.rg, 1.0 / PackFactors.b );\nconst vec4 UnpackFactors4 = vec4( UnpackDownscale / PackFactors.rgb, 1.0 / PackFactors.a );\nvec4 packDepthToRGBA( const in float v ) {\n\tif( v <= 0.0 )\n\t\treturn vec4( 0., 0., 0., 0. );\n\tif( v >= 1.0 )\n\t\treturn vec4( 1., 1., 1., 1. );\n\tfloat vuf;\n\tfloat af = modf( v * PackFactors.a, vuf );\n\tfloat bf = modf( vuf * ShiftRight8, vuf );\n\tfloat gf = modf( vuf * ShiftRight8, vuf );\n\treturn vec4( vuf * Inv255, gf * PackUpscale, bf * PackUpscale, af );\n}\nvec3 packDepthToRGB( const in float v ) {\n\tif( v <= 0.0 )\n\t\treturn vec3( 0., 0., 0. );\n\tif( v >= 1.0 )\n\t\treturn vec3( 1., 1., 1. );\n\tfloat vuf;\n\tfloat bf = modf( v * PackFactors.b, vuf );\n\tfloat gf = modf( vuf * ShiftRight8, vuf );\n\treturn vec3( vuf * Inv255, gf * PackUpscale, bf );\n}\nvec2 packDepthToRG( const in float v ) {\n\tif( v <= 0.0 )\n\t\treturn vec2( 0., 0. );\n\tif( v >= 1.0 )\n\t\treturn vec2( 1., 1. );\n\tfloat vuf;\n\tfloat gf = modf( v * 256., vuf );\n\treturn vec2( vuf * Inv255, gf );\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors4 );\n}\nfloat unpackRGBToDepth( const in vec3 v ) {\n\treturn dot( v, UnpackFactors3 );\n}\nfloat unpackRGToDepth( const in vec2 v ) {\n\treturn v.r * UnpackFactors2.r + v.g * UnpackFactors2.g;\n}\nvec4 pack2HalfToRGBA( const in vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( const in vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float depth, const in float near, const in float far ) {\n\treturn depth * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float depth, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * depth - far );\n}",premultiplied_alpha_fragment:"#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif",project_vertex:"vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_BATCHING\n\tmvPosition = batchingMatrix * mvPosition;\n#endif\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;",dithering_fragment:"#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif",dithering_pars_fragment:"#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif",roughnessmap_fragment:"float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vRoughnessMapUv );\n\troughnessFactor *= texelRoughness.g;\n#endif",roughnessmap_pars_fragment:"#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif",shadowmap_pars_fragment:"#if NUM_SPOT_LIGHT_COORDS > 0\n\tvarying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];\n#endif\n#if NUM_SPOT_LIGHT_MAPS > 0\n\tuniform sampler2D spotLightMap[ NUM_SPOT_LIGHT_MAPS ];\n#endif\n#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowIntensity, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbool inFrustum = shadowCoord.x >= 0.0 && shadowCoord.x <= 1.0 && shadowCoord.y >= 0.0 && shadowCoord.y <= 1.0;\n\t\tbool frustumTest = inFrustum && shadowCoord.z <= 1.0;\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn mix( 1.0, shadow, shadowIntensity );\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowIntensity, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tfloat shadow = 1.0;\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\t\n\t\tfloat lightToPositionLength = length( lightToPosition );\n\t\tif ( lightToPositionLength - shadowCameraFar <= 0.0 && lightToPositionLength - shadowCameraNear >= 0.0 ) {\n\t\t\tfloat dp = ( lightToPositionLength - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\t\tdp += shadowBias;\n\t\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\t\tshadow = (\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t\t) * ( 1.0 / 9.0 );\n\t\t\t#else\n\t\t\t\tshadow = texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t\t#endif\n\t\t}\n\t\treturn mix( 1.0, shadow, shadowIntensity );\n\t}\n#endif",shadowmap_pars_vertex:"#if NUM_SPOT_LIGHT_COORDS > 0\n\tuniform mat4 spotLightMatrix[ NUM_SPOT_LIGHT_COORDS ];\n\tvarying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];\n#endif\n#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif",shadowmap_vertex:"#if ( defined( USE_SHADOWMAP ) && ( NUM_DIR_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0 ) ) || ( NUM_SPOT_LIGHT_COORDS > 0 )\n\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\tvec4 shadowWorldPosition;\n#endif\n#if defined( USE_SHADOWMAP )\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if NUM_SPOT_LIGHT_COORDS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_COORDS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition;\n\t\t#if ( defined( USE_SHADOWMAP ) && UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\t\tshadowWorldPosition.xyz += shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias;\n\t\t#endif\n\t\tvSpotLightCoord[ i ] = spotLightMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n#endif",shadowmask_pars_fragment:"float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowIntensity, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowIntensity, spotLight.shadowBias, spotLight.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowIntensity, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}",skinbase_vertex:"#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif",skinning_pars_vertex:"#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\tuniform highp sampler2D boneTexture;\n\tmat4 getBoneMatrix( const in float i ) {\n\t\tint size = textureSize( boneTexture, 0 ).x;\n\t\tint j = int( i ) * 4;\n\t\tint x = j % size;\n\t\tint y = j / size;\n\t\tvec4 v1 = texelFetch( boneTexture, ivec2( x, y ), 0 );\n\t\tvec4 v2 = texelFetch( boneTexture, ivec2( x + 1, y ), 0 );\n\t\tvec4 v3 = texelFetch( boneTexture, ivec2( x + 2, y ), 0 );\n\t\tvec4 v4 = texelFetch( boneTexture, ivec2( x + 3, y ), 0 );\n\t\treturn mat4( v1, v2, v3, v4 );\n\t}\n#endif",skinning_vertex:"#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif",skinnormal_vertex:"#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif",specularmap_fragment:"float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vSpecularMapUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif",specularmap_pars_fragment:"#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif",tonemapping_fragment:"#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif",tonemapping_pars_fragment:"#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn saturate( toneMappingExposure * color );\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 CineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nconst mat3 LINEAR_REC2020_TO_LINEAR_SRGB = mat3(\n\tvec3( 1.6605, - 0.1246, - 0.0182 ),\n\tvec3( - 0.5876, 1.1329, - 0.1006 ),\n\tvec3( - 0.0728, - 0.0083, 1.1187 )\n);\nconst mat3 LINEAR_SRGB_TO_LINEAR_REC2020 = mat3(\n\tvec3( 0.6274, 0.0691, 0.0164 ),\n\tvec3( 0.3293, 0.9195, 0.0880 ),\n\tvec3( 0.0433, 0.0113, 0.8956 )\n);\nvec3 agxDefaultContrastApprox( vec3 x ) {\n\tvec3 x2 = x * x;\n\tvec3 x4 = x2 * x2;\n\treturn + 15.5 * x4 * x2\n\t\t- 40.14 * x4 * x\n\t\t+ 31.96 * x4\n\t\t- 6.868 * x2 * x\n\t\t+ 0.4298 * x2\n\t\t+ 0.1191 * x\n\t\t- 0.00232;\n}\nvec3 AgXToneMapping( vec3 color ) {\n\tconst mat3 AgXInsetMatrix = mat3(\n\t\tvec3( 0.856627153315983, 0.137318972929847, 0.11189821299995 ),\n\t\tvec3( 0.0951212405381588, 0.761241990602591, 0.0767994186031903 ),\n\t\tvec3( 0.0482516061458583, 0.101439036467562, 0.811302368396859 )\n\t);\n\tconst mat3 AgXOutsetMatrix = mat3(\n\t\tvec3( 1.1271005818144368, - 0.1413297634984383, - 0.14132976349843826 ),\n\t\tvec3( - 0.11060664309660323, 1.157823702216272, - 0.11060664309660294 ),\n\t\tvec3( - 0.016493938717834573, - 0.016493938717834257, 1.2519364065950405 )\n\t);\n\tconst float AgxMinEv = - 12.47393;\tconst float AgxMaxEv = 4.026069;\n\tcolor *= toneMappingExposure;\n\tcolor = LINEAR_SRGB_TO_LINEAR_REC2020 * color;\n\tcolor = AgXInsetMatrix * color;\n\tcolor = max( color, 1e-10 );\tcolor = log2( color );\n\tcolor = ( color - AgxMinEv ) / ( AgxMaxEv - AgxMinEv );\n\tcolor = clamp( color, 0.0, 1.0 );\n\tcolor = agxDefaultContrastApprox( color );\n\tcolor = AgXOutsetMatrix * color;\n\tcolor = pow( max( vec3( 0.0 ), color ), vec3( 2.2 ) );\n\tcolor = LINEAR_REC2020_TO_LINEAR_SRGB * color;\n\tcolor = clamp( color, 0.0, 1.0 );\n\treturn color;\n}\nvec3 NeutralToneMapping( vec3 color ) {\n\tconst float StartCompression = 0.8 - 0.04;\n\tconst float Desaturation = 0.15;\n\tcolor *= toneMappingExposure;\n\tfloat x = min( color.r, min( color.g, color.b ) );\n\tfloat offset = x < 0.08 ? x - 6.25 * x * x : 0.04;\n\tcolor -= offset;\n\tfloat peak = max( color.r, max( color.g, color.b ) );\n\tif ( peak < StartCompression ) return color;\n\tfloat d = 1. - StartCompression;\n\tfloat newPeak = 1. - d * d / ( peak + d - StartCompression );\n\tcolor *= newPeak / peak;\n\tfloat g = 1. - 1. / ( Desaturation * ( peak - newPeak ) + 1. );\n\treturn mix( color, vec3( newPeak ), g );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }",transmission_fragment:"#ifdef USE_TRANSMISSION\n\tmaterial.transmission = transmission;\n\tmaterial.transmissionAlpha = 1.0;\n\tmaterial.thickness = thickness;\n\tmaterial.attenuationDistance = attenuationDistance;\n\tmaterial.attenuationColor = attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tmaterial.transmission *= texture2D( transmissionMap, vTransmissionMapUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tmaterial.thickness *= texture2D( thicknessMap, vThicknessMapUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmitted = getIBLVolumeRefraction(\n\t\tn, v, material.roughness, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, material.dispersion, material.ior, material.thickness,\n\t\tmaterial.attenuationColor, material.attenuationDistance );\n\tmaterial.transmissionAlpha = mix( material.transmissionAlpha, transmitted.a, material.transmission );\n\ttotalDiffuse = mix( totalDiffuse, transmitted.rgb, material.transmission );\n#endif",transmission_pars_fragment:"#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tfloat w0( float a ) {\n\t\treturn ( 1.0 / 6.0 ) * ( a * ( a * ( - a + 3.0 ) - 3.0 ) + 1.0 );\n\t}\n\tfloat w1( float a ) {\n\t\treturn ( 1.0 / 6.0 ) * ( a * a * ( 3.0 * a - 6.0 ) + 4.0 );\n\t}\n\tfloat w2( float a ){\n\t\treturn ( 1.0 / 6.0 ) * ( a * ( a * ( - 3.0 * a + 3.0 ) + 3.0 ) + 1.0 );\n\t}\n\tfloat w3( float a ) {\n\t\treturn ( 1.0 / 6.0 ) * ( a * a * a );\n\t}\n\tfloat g0( float a ) {\n\t\treturn w0( a ) + w1( a );\n\t}\n\tfloat g1( float a ) {\n\t\treturn w2( a ) + w3( a );\n\t}\n\tfloat h0( float a ) {\n\t\treturn - 1.0 + w1( a ) / ( w0( a ) + w1( a ) );\n\t}\n\tfloat h1( float a ) {\n\t\treturn 1.0 + w3( a ) / ( w2( a ) + w3( a ) );\n\t}\n\tvec4 bicubic( sampler2D tex, vec2 uv, vec4 texelSize, float lod ) {\n\t\tuv = uv * texelSize.zw + 0.5;\n\t\tvec2 iuv = floor( uv );\n\t\tvec2 fuv = fract( uv );\n\t\tfloat g0x = g0( fuv.x );\n\t\tfloat g1x = g1( fuv.x );\n\t\tfloat h0x = h0( fuv.x );\n\t\tfloat h1x = h1( fuv.x );\n\t\tfloat h0y = h0( fuv.y );\n\t\tfloat h1y = h1( fuv.y );\n\t\tvec2 p0 = ( vec2( iuv.x + h0x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;\n\t\tvec2 p1 = ( vec2( iuv.x + h1x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;\n\t\tvec2 p2 = ( vec2( iuv.x + h0x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;\n\t\tvec2 p3 = ( vec2( iuv.x + h1x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;\n\t\treturn g0( fuv.y ) * ( g0x * textureLod( tex, p0, lod ) + g1x * textureLod( tex, p1, lod ) ) +\n\t\t\tg1( fuv.y ) * ( g0x * textureLod( tex, p2, lod ) + g1x * textureLod( tex, p3, lod ) );\n\t}\n\tvec4 textureBicubic( sampler2D sampler, vec2 uv, float lod ) {\n\t\tvec2 fLodSize = vec2( textureSize( sampler, int( lod ) ) );\n\t\tvec2 cLodSize = vec2( textureSize( sampler, int( lod + 1.0 ) ) );\n\t\tvec2 fLodSizeInv = 1.0 / fLodSize;\n\t\tvec2 cLodSizeInv = 1.0 / cLodSize;\n\t\tvec4 fSample = bicubic( sampler, uv, vec4( fLodSizeInv, fLodSize ), floor( lod ) );\n\t\tvec4 cSample = bicubic( sampler, uv, vec4( cLodSizeInv, cLodSize ), ceil( lod ) );\n\t\treturn mix( fSample, cSample, fract( lod ) );\n\t}\n\tvec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( const in float roughness, const in float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) {\n\t\tfloat lod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\treturn textureBicubic( transmissionSamplerMap, fragCoord.xy, lod );\n\t}\n\tvec3 volumeAttenuation( const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) {\n\t\tif ( isinf( attenuationDistance ) ) {\n\t\t\treturn vec3( 1.0 );\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor,\n\t\tconst in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix,\n\t\tconst in mat4 viewMatrix, const in mat4 projMatrix, const in float dispersion, const in float ior, const in float thickness,\n\t\tconst in vec3 attenuationColor, const in float attenuationDistance ) {\n\t\tvec4 transmittedLight;\n\t\tvec3 transmittance;\n\t\t#ifdef USE_DISPERSION\n\t\t\tfloat halfSpread = ( ior - 1.0 ) * 0.025 * dispersion;\n\t\t\tvec3 iors = vec3( ior - halfSpread, ior, ior + halfSpread );\n\t\t\tfor ( int i = 0; i < 3; i ++ ) {\n\t\t\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, iors[ i ], modelMatrix );\n\t\t\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\t\n\t\t\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\t\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\t\t\trefractionCoords += 1.0;\n\t\t\t\trefractionCoords /= 2.0;\n\t\t\n\t\t\t\tvec4 transmissionSample = getTransmissionSample( refractionCoords, roughness, iors[ i ] );\n\t\t\t\ttransmittedLight[ i ] = transmissionSample[ i ];\n\t\t\t\ttransmittedLight.a += transmissionSample.a;\n\t\t\t\ttransmittance[ i ] = diffuseColor[ i ] * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance )[ i ];\n\t\t\t}\n\t\t\ttransmittedLight.a /= 3.0;\n\t\t\n\t\t#else\n\t\t\n\t\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\t\trefractionCoords += 1.0;\n\t\t\trefractionCoords /= 2.0;\n\t\t\ttransmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\t\ttransmittance = diffuseColor * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\t\n\t\t#endif\n\t\tvec3 attenuatedColor = transmittance * transmittedLight.rgb;\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\tfloat transmittanceFactor = ( transmittance.r + transmittance.g + transmittance.b ) / 3.0;\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor, 1.0 - ( 1.0 - transmittedLight.a ) * transmittanceFactor );\n\t}\n#endif",uv_pars_fragment:"#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n\tvarying vec2 vUv;\n#endif\n#ifdef USE_MAP\n\tvarying vec2 vMapUv;\n#endif\n#ifdef USE_ALPHAMAP\n\tvarying vec2 vAlphaMapUv;\n#endif\n#ifdef USE_LIGHTMAP\n\tvarying vec2 vLightMapUv;\n#endif\n#ifdef USE_AOMAP\n\tvarying vec2 vAoMapUv;\n#endif\n#ifdef USE_BUMPMAP\n\tvarying vec2 vBumpMapUv;\n#endif\n#ifdef USE_NORMALMAP\n\tvarying vec2 vNormalMapUv;\n#endif\n#ifdef USE_EMISSIVEMAP\n\tvarying vec2 vEmissiveMapUv;\n#endif\n#ifdef USE_METALNESSMAP\n\tvarying vec2 vMetalnessMapUv;\n#endif\n#ifdef USE_ROUGHNESSMAP\n\tvarying vec2 vRoughnessMapUv;\n#endif\n#ifdef USE_ANISOTROPYMAP\n\tvarying vec2 vAnisotropyMapUv;\n#endif\n#ifdef USE_CLEARCOATMAP\n\tvarying vec2 vClearcoatMapUv;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tvarying vec2 vClearcoatNormalMapUv;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tvarying vec2 vClearcoatRoughnessMapUv;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n\tvarying vec2 vIridescenceMapUv;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tvarying vec2 vIridescenceThicknessMapUv;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n\tvarying vec2 vSheenColorMapUv;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n\tvarying vec2 vSheenRoughnessMapUv;\n#endif\n#ifdef USE_SPECULARMAP\n\tvarying vec2 vSpecularMapUv;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n\tvarying vec2 vSpecularColorMapUv;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n\tvarying vec2 vSpecularIntensityMapUv;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n\tuniform mat3 transmissionMapTransform;\n\tvarying vec2 vTransmissionMapUv;\n#endif\n#ifdef USE_THICKNESSMAP\n\tuniform mat3 thicknessMapTransform;\n\tvarying vec2 vThicknessMapUv;\n#endif",uv_pars_vertex:"#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n\tvarying vec2 vUv;\n#endif\n#ifdef USE_MAP\n\tuniform mat3 mapTransform;\n\tvarying vec2 vMapUv;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform mat3 alphaMapTransform;\n\tvarying vec2 vAlphaMapUv;\n#endif\n#ifdef USE_LIGHTMAP\n\tuniform mat3 lightMapTransform;\n\tvarying vec2 vLightMapUv;\n#endif\n#ifdef USE_AOMAP\n\tuniform mat3 aoMapTransform;\n\tvarying vec2 vAoMapUv;\n#endif\n#ifdef USE_BUMPMAP\n\tuniform mat3 bumpMapTransform;\n\tvarying vec2 vBumpMapUv;\n#endif\n#ifdef USE_NORMALMAP\n\tuniform mat3 normalMapTransform;\n\tvarying vec2 vNormalMapUv;\n#endif\n#ifdef USE_DISPLACEMENTMAP\n\tuniform mat3 displacementMapTransform;\n\tvarying vec2 vDisplacementMapUv;\n#endif\n#ifdef USE_EMISSIVEMAP\n\tuniform mat3 emissiveMapTransform;\n\tvarying vec2 vEmissiveMapUv;\n#endif\n#ifdef USE_METALNESSMAP\n\tuniform mat3 metalnessMapTransform;\n\tvarying vec2 vMetalnessMapUv;\n#endif\n#ifdef USE_ROUGHNESSMAP\n\tuniform mat3 roughnessMapTransform;\n\tvarying vec2 vRoughnessMapUv;\n#endif\n#ifdef USE_ANISOTROPYMAP\n\tuniform mat3 anisotropyMapTransform;\n\tvarying vec2 vAnisotropyMapUv;\n#endif\n#ifdef USE_CLEARCOATMAP\n\tuniform mat3 clearcoatMapTransform;\n\tvarying vec2 vClearcoatMapUv;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform mat3 clearcoatNormalMapTransform;\n\tvarying vec2 vClearcoatNormalMapUv;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform mat3 clearcoatRoughnessMapTransform;\n\tvarying vec2 vClearcoatRoughnessMapUv;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n\tuniform mat3 sheenColorMapTransform;\n\tvarying vec2 vSheenColorMapUv;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n\tuniform mat3 sheenRoughnessMapTransform;\n\tvarying vec2 vSheenRoughnessMapUv;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n\tuniform mat3 iridescenceMapTransform;\n\tvarying vec2 vIridescenceMapUv;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tuniform mat3 iridescenceThicknessMapTransform;\n\tvarying vec2 vIridescenceThicknessMapUv;\n#endif\n#ifdef USE_SPECULARMAP\n\tuniform mat3 specularMapTransform;\n\tvarying vec2 vSpecularMapUv;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n\tuniform mat3 specularColorMapTransform;\n\tvarying vec2 vSpecularColorMapUv;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n\tuniform mat3 specularIntensityMapTransform;\n\tvarying vec2 vSpecularIntensityMapUv;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n\tuniform mat3 transmissionMapTransform;\n\tvarying vec2 vTransmissionMapUv;\n#endif\n#ifdef USE_THICKNESSMAP\n\tuniform mat3 thicknessMapTransform;\n\tvarying vec2 vThicknessMapUv;\n#endif",uv_vertex:"#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n\tvUv = vec3( uv, 1 ).xy;\n#endif\n#ifdef USE_MAP\n\tvMapUv = ( mapTransform * vec3( MAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ALPHAMAP\n\tvAlphaMapUv = ( alphaMapTransform * vec3( ALPHAMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_LIGHTMAP\n\tvLightMapUv = ( lightMapTransform * vec3( LIGHTMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_AOMAP\n\tvAoMapUv = ( aoMapTransform * vec3( AOMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_BUMPMAP\n\tvBumpMapUv = ( bumpMapTransform * vec3( BUMPMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_NORMALMAP\n\tvNormalMapUv = ( normalMapTransform * vec3( NORMALMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_DISPLACEMENTMAP\n\tvDisplacementMapUv = ( displacementMapTransform * vec3( DISPLACEMENTMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_EMISSIVEMAP\n\tvEmissiveMapUv = ( emissiveMapTransform * vec3( EMISSIVEMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_METALNESSMAP\n\tvMetalnessMapUv = ( metalnessMapTransform * vec3( METALNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ROUGHNESSMAP\n\tvRoughnessMapUv = ( roughnessMapTransform * vec3( ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ANISOTROPYMAP\n\tvAnisotropyMapUv = ( anisotropyMapTransform * vec3( ANISOTROPYMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOATMAP\n\tvClearcoatMapUv = ( clearcoatMapTransform * vec3( CLEARCOATMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tvClearcoatNormalMapUv = ( clearcoatNormalMapTransform * vec3( CLEARCOAT_NORMALMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tvClearcoatRoughnessMapUv = ( clearcoatRoughnessMapTransform * vec3( CLEARCOAT_ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n\tvIridescenceMapUv = ( iridescenceMapTransform * vec3( IRIDESCENCEMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tvIridescenceThicknessMapUv = ( iridescenceThicknessMapTransform * vec3( IRIDESCENCE_THICKNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n\tvSheenColorMapUv = ( sheenColorMapTransform * vec3( SHEEN_COLORMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n\tvSheenRoughnessMapUv = ( sheenRoughnessMapTransform * vec3( SHEEN_ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULARMAP\n\tvSpecularMapUv = ( specularMapTransform * vec3( SPECULARMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n\tvSpecularColorMapUv = ( specularColorMapTransform * vec3( SPECULAR_COLORMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n\tvSpecularIntensityMapUv = ( specularIntensityMapTransform * vec3( SPECULAR_INTENSITYMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n\tvTransmissionMapUv = ( transmissionMapTransform * vec3( TRANSMISSIONMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_THICKNESSMAP\n\tvThicknessMapUv = ( thicknessMapTransform * vec3( THICKNESSMAP_UV, 1 ) ).xy;\n#endif",worldpos_vertex:"#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION ) || NUM_SPOT_LIGHT_COORDS > 0\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_BATCHING\n\t\tworldPosition = batchingMatrix * worldPosition;\n\t#endif\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif",background_vert:"varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}",background_frag:"uniform sampler2D t2D;\nuniform float backgroundIntensity;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\t#ifdef DECODE_VIDEO_TEXTURE\n\t\ttexColor = vec4( mix( pow( texColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), texColor.rgb * 0.0773993808, vec3( lessThanEqual( texColor.rgb, vec3( 0.04045 ) ) ) ), texColor.w );\n\t#endif\n\ttexColor.rgb *= backgroundIntensity;\n\tgl_FragColor = texColor;\n\t#include \n\t#include \n}",backgroundCube_vert:"varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}",backgroundCube_frag:"#ifdef ENVMAP_TYPE_CUBE\n\tuniform samplerCube envMap;\n#elif defined( ENVMAP_TYPE_CUBE_UV )\n\tuniform sampler2D envMap;\n#endif\nuniform float flipEnvMap;\nuniform float backgroundBlurriness;\nuniform float backgroundIntensity;\nuniform mat3 backgroundRotation;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 texColor = textureCube( envMap, backgroundRotation * vec3( flipEnvMap * vWorldDirection.x, vWorldDirection.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 texColor = textureCubeUV( envMap, backgroundRotation * vWorldDirection, backgroundBlurriness );\n\t#else\n\t\tvec4 texColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\t#endif\n\ttexColor.rgb *= backgroundIntensity;\n\tgl_FragColor = texColor;\n\t#include \n\t#include \n}",cube_vert:"varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}",cube_frag:"uniform samplerCube tCube;\nuniform float tFlip;\nuniform float opacity;\nvarying vec3 vWorldDirection;\nvoid main() {\n\tvec4 texColor = textureCube( tCube, vec3( tFlip * vWorldDirection.x, vWorldDirection.yz ) );\n\tgl_FragColor = texColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}",depth_vert:"#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}",depth_frag:"#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#elif DEPTH_PACKING == 3202\n\t\tgl_FragColor = vec4( packDepthToRGB( fragCoordZ ), 1.0 );\n\t#elif DEPTH_PACKING == 3203\n\t\tgl_FragColor = vec4( packDepthToRG( fragCoordZ ), 0.0, 1.0 );\n\t#endif\n}",distanceRGBA_vert:"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}",distanceRGBA_frag:"#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}",equirect_vert:"varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}",equirect_frag:"uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\n\t#include \n\t#include \n}",linedashed_vert:"uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",linedashed_frag:"uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshbasic_vert:"#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshbasic_frag:"uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vLightMapUv );\n\t\treflectedLight.indirectDiffuse += lightMapTexel.rgb * lightMapIntensity * RECIPROCAL_PI;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}",meshlambert_vert:"#define LAMBERT\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include