-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathaiy_model_output.py
93 lines (72 loc) · 2.74 KB
/
aiy_model_output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Function to standardize inference output of AIY models
import json # Format API output
# AIY requirements
from aiy.vision.models import object_detection, face_detection, image_classification
# return the appropriate model
def model_selector(argument):
options = {
"object": object_detection.model(),
"face": face_detection.model(),
"class": image_classification.model()
}
return options.get(argument, "nothing")
# helper class to convert inference output to JSON
class ApiObject(object):
def __init__(self):
self.name = "webrtcHacks AIY Vision Server REST API"
self.version = "0.2.1"
self.numObjects = 0
self.objects = []
def to_json(self):
return json.dumps(self.__dict__)
def process_inference(model, result, params):
output = ApiObject()
# handler for the AIY Vision object detection model
if model == "object":
output.threshold = 0.3
objects = object_detection.get_objects(result, output.threshold)
for obj in objects:
# print(object)
item = {
'name': 'object',
'class_name': obj._LABELS[obj.kind],
'score': obj.score,
'x': obj.bounding_box[0] / params['width'],
'y': obj.bounding_box[1] / params['height'],
'width': obj.bounding_box[2] / params['width'],
'height': obj.bounding_box[3] / params['height']
}
output.numObjects += 1
output.objects.append(item)
# handler for the AIY Vision face detection model
elif model == "face":
faces = face_detection.get_faces(result)
for face in faces:
# print(face)
item = {
'name': 'face',
'score': face.face_score,
'joy': face.joy_score,
'x': face.bounding_box[0] / params['width'],
'y': face.bounding_box[1] / params['height'],
'width': face.bounding_box[2] / params['width'],
'height': face.bounding_box[3] / params['height']
}
output.numObjects += 1
output.objects.append(item)
elif model == "class":
output.threshold = 0.3
classes = image_classification.get_classes(result)
s = ""
for (obj, prob) in classes:
if prob > output.threshold:
s += '%s=%1.2f\t|\t' % (obj, prob)
item = {
'name': 'class',
'class_name': obj,
'score': prob
}
output.numObjects += 1
output.objects.append(item)
# print('%s\r' % s)
return output