forked from abhaikollara/Chromosome-Segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
55 lines (43 loc) · 1.53 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import keras
from keras.models import Model
from keras.layers import Activation, BatchNormalization, Dense, Input
from keras.layers import Convolution2D, MaxPooling2D, UpSampling2D, ZeroPadding2D
from keras import backend as K
k_size=3
def custom_loss(y_true, y_pred):
y_t = K.reshape(y_true,[-1,1])
y_p = K.reshape(y_pred,[-1,4])
losses = K.sparse_categorical_crossentropy(y_p,y_t, from_logits=True)
return K.sum(losses)
def SegNet():
inputs = Input([96,96,1])
# Encoder
e = Convolution2D(32,k_size,k_size,border_mode='same')(inputs)
e = BatchNormalization()(e)
e = Activation('relu')(e)
e = MaxPooling2D()(e)
e = Convolution2D(32,k_size,k_size,border_mode='same')(e)
e = BatchNormalization()(e)
e = Activation('relu')(e)
e = MaxPooling2D()(e)
e = Convolution2D(32,k_size,k_size,border_mode='same')(e)
e = BatchNormalization()(e)
e = Activation('relu')(e)
e = MaxPooling2D()(e)
# Decoder
d = UpSampling2D()(e)
d = Convolution2D(32,k_size,k_size,border_mode='same')(d)
d = BatchNormalization()(d)
d = Activation('relu')(d)
d = UpSampling2D()(d)
d = Convolution2D(32,k_size,k_size,border_mode='same')(d)
d = BatchNormalization()(d)
d = Activation('relu')(d)
d = UpSampling2D()(d)
d = Convolution2D(32,k_size,k_size,border_mode='same')(d)
d = BatchNormalization()(d)
d = Activation('relu')(d)
out = Convolution2D(4,1,1)(d)
model = Model(inputs, out)
model.compile(optimizer='adam', loss=custom_loss)
return model