forked from Luoxd1996/nnunet_mini
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_augmentation_moreDA.py
210 lines (177 loc) · 12.2 KB
/
data_augmentation_moreDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from batchgenerators.dataloading.multi_threaded_augmenter import MultiThreadedAugmenter
from batchgenerators.transforms.abstract_transforms import Compose
from batchgenerators.transforms.channel_selection_transforms import DataChannelSelectionTransform, \
SegChannelSelectionTransform
from batchgenerators.transforms.color_transforms import BrightnessMultiplicativeTransform, \
ContrastAugmentationTransform, BrightnessTransform
from batchgenerators.transforms.color_transforms import GammaTransform
from batchgenerators.transforms.noise_transforms import GaussianNoiseTransform, GaussianBlurTransform
from batchgenerators.transforms.resample_transforms import SimulateLowResolutionTransform
from batchgenerators.transforms.spatial_transforms import SpatialTransform, MirrorTransform
from batchgenerators.transforms.utility_transforms import RemoveLabelTransform, RenameTransform, NumpyToTensor
from custom_transforms import Convert3DTo2DTransform, Convert2DTo3DTransform, \
MaskTransform, ConvertSegmentationToRegionsTransform
from default_data_augmentation import default_3D_augmentation_params
from downsampling import DownsampleSegForDSTransform3, DownsampleSegForDSTransform2
from pyramid_augmentations import MoveSegAsOneHotToData, \
ApplyRandomBinaryOperatorTransform, \
RemoveRandomConnectedComponentFromOneHotEncodingTransform
try:
from batchgenerators.dataloading.nondet_multi_threaded_augmenter import NonDetMultiThreadedAugmenter
except ImportError as ie:
NonDetMultiThreadedAugmenter = None
def get_moreDA_augmentation(dataloader_train, dataloader_val, patch_size, params=default_3D_augmentation_params,
border_val_seg=-1,
seeds_train=None, seeds_val=None, order_seg=1, order_data=3, deep_supervision_scales=None,
soft_ds=False,
classes=None, pin_memory=True, regions=None,
use_nondetMultiThreadedAugmenter: bool = False):
assert params.get('mirror') is None, "old version of params, use new keyword do_mirror"
tr_transforms = []
if params.get("selected_data_channels") is not None:
tr_transforms.append(DataChannelSelectionTransform(params.get("selected_data_channels")))
if params.get("selected_seg_channels") is not None:
tr_transforms.append(SegChannelSelectionTransform(params.get("selected_seg_channels")))
# don't do color augmentations while in 2d mode with 3d data because the color channel is overloaded!!
if params.get("dummy_2D") is not None and params.get("dummy_2D"):
ignore_axes = (0,)
tr_transforms.append(Convert3DTo2DTransform())
patch_size_spatial = patch_size[1:]
else:
patch_size_spatial = patch_size
ignore_axes = None
tr_transforms.append(SpatialTransform(
patch_size_spatial, patch_center_dist_from_border=None,
do_elastic_deform=params.get("do_elastic"), alpha=params.get("elastic_deform_alpha"),
sigma=params.get("elastic_deform_sigma"),
do_rotation=params.get("do_rotation"), angle_x=params.get("rotation_x"), angle_y=params.get("rotation_y"),
angle_z=params.get("rotation_z"), p_rot_per_axis=params.get("rotation_p_per_axis"),
do_scale=params.get("do_scaling"), scale=params.get("scale_range"),
border_mode_data=params.get("border_mode_data"), border_cval_data=0, order_data=order_data,
border_mode_seg="constant", border_cval_seg=border_val_seg,
order_seg=order_seg, random_crop=params.get("random_crop"), p_el_per_sample=params.get("p_eldef"),
p_scale_per_sample=params.get("p_scale"), p_rot_per_sample=params.get("p_rot"),
independent_scale_for_each_axis=params.get("independent_scale_factor_for_each_axis")
))
if params.get("dummy_2D"):
tr_transforms.append(Convert2DTo3DTransform())
# we need to put the color augmentations after the dummy 2d part (if applicable). Otherwise the overloaded color
# channel gets in the way
tr_transforms.append(GaussianNoiseTransform(p_per_sample=0.1))
tr_transforms.append(GaussianBlurTransform((0.5, 1.), different_sigma_per_channel=True, p_per_sample=0.2,
p_per_channel=0.5))
tr_transforms.append(BrightnessMultiplicativeTransform(multiplier_range=(0.75, 1.25), p_per_sample=0.15))
if params.get("do_additive_brightness"):
tr_transforms.append(BrightnessTransform(params.get("additive_brightness_mu"),
params.get("additive_brightness_sigma"),
True, p_per_sample=params.get("additive_brightness_p_per_sample"),
p_per_channel=params.get("additive_brightness_p_per_channel")))
tr_transforms.append(ContrastAugmentationTransform(p_per_sample=0.15))
tr_transforms.append(SimulateLowResolutionTransform(zoom_range=(0.5, 1), per_channel=True,
p_per_channel=0.5,
order_downsample=0, order_upsample=3, p_per_sample=0.25,
ignore_axes=ignore_axes))
tr_transforms.append(
GammaTransform(params.get("gamma_range"), True, True, retain_stats=params.get("gamma_retain_stats"),
p_per_sample=0.1)) # inverted gamma
if params.get("do_gamma"):
tr_transforms.append(
GammaTransform(params.get("gamma_range"), False, True, retain_stats=params.get("gamma_retain_stats"),
p_per_sample=params["p_gamma"]))
if params.get("do_mirror") or params.get("mirror"):
tr_transforms.append(MirrorTransform(params.get("mirror_axes")))
if params.get("mask_was_used_for_normalization") is not None:
mask_was_used_for_normalization = params.get("mask_was_used_for_normalization")
tr_transforms.append(MaskTransform(mask_was_used_for_normalization, mask_idx_in_seg=0, set_outside_to=0))
tr_transforms.append(RemoveLabelTransform(-1, 0))
if params.get("move_last_seg_chanel_to_data") is not None and params.get("move_last_seg_chanel_to_data"):
tr_transforms.append(MoveSegAsOneHotToData(1, params.get("all_segmentation_labels"), 'seg', 'data'))
if params.get("cascade_do_cascade_augmentations") is not None and params.get(
"cascade_do_cascade_augmentations"):
if params.get("cascade_random_binary_transform_p") > 0:
tr_transforms.append(ApplyRandomBinaryOperatorTransform(
channel_idx=list(range(-len(params.get("all_segmentation_labels")), 0)),
p_per_sample=params.get("cascade_random_binary_transform_p"),
key="data",
strel_size=params.get("cascade_random_binary_transform_size"),
p_per_label=params.get("cascade_random_binary_transform_p_per_label")))
if params.get("cascade_remove_conn_comp_p") > 0:
tr_transforms.append(
RemoveRandomConnectedComponentFromOneHotEncodingTransform(
channel_idx=list(range(-len(params.get("all_segmentation_labels")), 0)),
key="data",
p_per_sample=params.get("cascade_remove_conn_comp_p"),
fill_with_other_class_p=params.get("cascade_remove_conn_comp_max_size_percent_threshold"),
dont_do_if_covers_more_than_X_percent=params.get(
"cascade_remove_conn_comp_fill_with_other_class_p")))
tr_transforms.append(RenameTransform('seg', 'target', True))
if regions is not None:
tr_transforms.append(ConvertSegmentationToRegionsTransform(regions, 'target', 'target'))
if deep_supervision_scales is not None:
if soft_ds:
assert classes is not None
tr_transforms.append(DownsampleSegForDSTransform3(deep_supervision_scales, 'target', 'target', classes))
else:
tr_transforms.append(DownsampleSegForDSTransform2(deep_supervision_scales, 0, input_key='target',
output_key='target'))
tr_transforms.append(NumpyToTensor(['data', 'target'], 'float'))
tr_transforms = Compose(tr_transforms)
if use_nondetMultiThreadedAugmenter:
if NonDetMultiThreadedAugmenter is None:
raise RuntimeError('NonDetMultiThreadedAugmenter is not yet available')
batchgenerator_train = NonDetMultiThreadedAugmenter(dataloader_train, tr_transforms, params.get('num_threads'),
params.get("num_cached_per_thread"), seeds=seeds_train,
pin_memory=pin_memory)
else:
batchgenerator_train = MultiThreadedAugmenter(dataloader_train, tr_transforms, params.get('num_threads'),
params.get("num_cached_per_thread"),
seeds=seeds_train, pin_memory=pin_memory)
# batchgenerator_train = SingleThreadedAugmenter(dataloader_train, tr_transforms)
# import IPython;IPython.embed()
val_transforms = []
val_transforms.append(RemoveLabelTransform(-1, 0))
if params.get("selected_data_channels") is not None:
val_transforms.append(DataChannelSelectionTransform(params.get("selected_data_channels")))
if params.get("selected_seg_channels") is not None:
val_transforms.append(SegChannelSelectionTransform(params.get("selected_seg_channels")))
if params.get("move_last_seg_chanel_to_data") is not None and params.get("move_last_seg_chanel_to_data"):
val_transforms.append(MoveSegAsOneHotToData(1, params.get("all_segmentation_labels"), 'seg', 'data'))
val_transforms.append(RenameTransform('seg', 'target', True))
if regions is not None:
val_transforms.append(ConvertSegmentationToRegionsTransform(regions, 'target', 'target'))
if deep_supervision_scales is not None:
if soft_ds:
assert classes is not None
val_transforms.append(DownsampleSegForDSTransform3(deep_supervision_scales, 'target', 'target', classes))
else:
val_transforms.append(DownsampleSegForDSTransform2(deep_supervision_scales, 0, input_key='target',
output_key='target'))
val_transforms.append(NumpyToTensor(['data', 'target'], 'float'))
val_transforms = Compose(val_transforms)
if use_nondetMultiThreadedAugmenter:
if NonDetMultiThreadedAugmenter is None:
raise RuntimeError('NonDetMultiThreadedAugmenter is not yet available')
batchgenerator_val = NonDetMultiThreadedAugmenter(dataloader_val, val_transforms,
max(params.get('num_threads') // 2, 1),
params.get("num_cached_per_thread"),
seeds=seeds_val, pin_memory=pin_memory)
else:
batchgenerator_val = MultiThreadedAugmenter(dataloader_val, val_transforms,
max(params.get('num_threads') // 2, 1),
params.get("num_cached_per_thread"),
seeds=seeds_val, pin_memory=pin_memory)
# batchgenerator_val = SingleThreadedAugmenter(dataloader_val, val_transforms)
return batchgenerator_train, batchgenerator_val