forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathlongestPalindromicSubstring.cpp
155 lines (128 loc) · 5.46 KB
/
longestPalindromicSubstring.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
// Source : https://oj.leetcode.com/problems/longest-palindromic-substring/
// Author : Hao Chen
// Date : 2014-07-17
/**********************************************************************************
*
* Given a string S, find the longest palindromic substring in S.
* You may assume that the maximum length of S is 1000,
* and there exists one unique longest palindromic substring.
*
**********************************************************************************/
#include <string.h>
#include <iostream>
#include <string>
#include <vector>
using namespace std;
string findPalindrome(string s, int left, int right)
{
int n = s.size();
int l = left;
int r = right;
while (left>=0 && right<=n-1 && s[left] == s[right]) {
left--;
right++;
}
return s.substr(left+1, right-left-1);
}
// This is the common solution.
// Actuatlly it's faster than DP solution under Leetcode's test
// the below optimized DP solution need 700ms+, this needs around 250ms.
string longestPalindrome_recursive_way(string s) {
int n = s.size();
if (n<=1) return s;
string longest;
string str;
for (int i=0; i<n-1; i++) {
str = findPalindrome(s, i, i);
if (str.size() > longest.size()){
longest = str;
}
str = findPalindrome(s, i, i+1);
if (str.size() > longest.size()){
longest = str;
}
}
return longest;
}
// Time/Memory Limit Exceeded
string longestPalindrome_dp_way(string s) {
string longest;
int n = s.size();
if (n<=1) return s;
//Construct a matrix, and consdier matrix[i][j] as s[i] -> s[j] is Palindrome or not.
//using char or int could cause the `Memory Limit Error`
//vector< vector<char> > matrix (n, vector<char>(n));
//using bool type could cause the `Time Limit Error`
vector< vector<bool> > matrix (n, vector<bool>(n));
// Dynamic Programming
// 1) if i == j, then matrix[i][j] = true;
// 2) if i != j, then matrix[i][j] = (s[i]==s[j] && matrix[i+1][j-1])
for (int i=n-1; i>=0; i--){
for (int j=i; j<n; j++){
// The following if statement can be broken to
// 1) i==j, matrix[i][j] = true
// 2) the length from i to j is 2 or 3, then, check s[i] == s[j]
// 3) the length from i to j > 3, then, check s[i]==s[j] && matrix[i+1][j-1]
if ( i==j || (s[i]==s[j] && (j-i<2 || matrix[i+1][j-1]) ) ) {
matrix[i][j] = true;
if (longest.size() < j-i+1){
longest = s.substr(i, j-i+1);
}
}
}
}
return longest;
}
// Optimized DP soltuion can be accepted by LeetCode.
string longestPalindrome_dp_opt_way(string s) {
int n = s.size();
if (n<=1) return s;
//Construct a matrix, and consdier matrix[j][i] as s[i] -> s[j] is Palindrome or not.
// ------^^^^^^
// NOTE: it's [j][i] not [i][j]
//Using vector could cause the `Time Limit Error`
//So, use the native array
bool **matrix = new bool* [n];
int start=0, len=0;
// Dynamic Programming
// 1) if i == j, then matrix[i][j] = true;
// 2) if i != j, then matrix[i][j] = (s[i]==s[j] && matrix[i-1][j+1])
for (int i=0; i<n; i++){
matrix[i] = new bool[i+1];
memset(matrix[i], false, (i+1)*sizeof(bool));
matrix[i][i]=true;
for (int j=0; j<i; j++){
// The following if statement can be broken to
// 1) j==i, matrix[i][j] = true
// 2) the length from j to i is 2 or 3, then, check s[i] == s[j]
// 3) the length from j to i > 3, then, check s[i]==s[j] && matrix[i-1][j+1]
if ( i==j || (s[j]==s[i] && (i-j<2 || matrix[i-1][j+1]) ) ) {
matrix[i][j] = true;
if (len < i-j+1){
start = j;
len = i-j+1;
}
}
}
}
for (int i=0; i<n; i++) {
delete [] matrix[i];
}
delete [] matrix;
return s.substr(start, len);
}
string longestPalindrome(string s) {
return longestPalindrome_dp_opt_way(s);
return longestPalindrome_recursive_way(s);
}
int main(int argc, char**argv)
{
string s = "abacdfgdcaba";
if (argc > 1){
s = argv[1];
}
cout << s << " : " << longestPalindrome(s) << endl;
s = "321012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210012321001232100123210123210012321001232100123210123";
cout << s << " : " << longestPalindrome(s) << endl;
return 0;
}