forked from mindspore-lab/mindcv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_with_func.py
491 lines (425 loc) · 16.6 KB
/
train_with_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
"""Use the PYNATIVE mode to train the network"""
import logging
import os
from time import time
from tqdm import tqdm
import mindspore as ms
from mindspore import SummaryRecord, Tensor, nn, ops
from mindspore.amp import StaticLossScaler
from mindspore.communication import get_group_size, get_rank, init
from mindspore.parallel._utils import _get_device_num, _get_gradients_mean
from mindcv.data import create_dataset, create_loader, create_transforms
from mindcv.loss import create_loss
from mindcv.models import create_model
from mindcv.optim import create_optimizer
from mindcv.scheduler import create_scheduler
from mindcv.utils import AllReduceSum, CheckpointManager, NoLossScaler
from mindcv.utils.random import set_seed
from config import parse_args # isort: skip
logger = logging.getLogger("train")
logger.setLevel(logging.INFO)
h1 = logging.StreamHandler()
formatter1 = logging.Formatter("%(message)s")
logger.addHandler(h1)
h1.setFormatter(formatter1)
def train(args):
"""Train network."""
ms.set_context(mode=args.mode)
if args.distribute:
init()
device_num = get_group_size()
rank_id = get_rank()
ms.set_auto_parallel_context(
device_num=device_num,
parallel_mode="data_parallel",
gradients_mean=True,
)
dist_sum = AllReduceSum()
else:
device_num = None
rank_id = None
dist_sum = None
set_seed(args.seed, rank_id)
# create dataset
dataset_train = create_dataset(
name=args.dataset,
root=args.data_dir,
split=args.train_split,
shuffle=args.shuffle,
num_samples=args.num_samples,
num_shards=device_num,
shard_id=rank_id,
num_parallel_workers=args.num_parallel_workers,
download=args.dataset_download,
num_aug_repeats=args.aug_repeats,
)
if args.num_classes is None:
num_classes = dataset_train.num_classes()
else:
num_classes = args.num_classes
# create transforms
transform_list = create_transforms(
dataset_name=args.dataset,
is_training=True,
image_resize=args.image_resize,
scale=args.scale,
ratio=args.ratio,
hflip=args.hflip,
vflip=args.vflip,
color_jitter=args.color_jitter,
interpolation=args.interpolation,
auto_augment=args.auto_augment,
mean=args.mean,
std=args.std,
re_prob=args.re_prob,
re_scale=args.re_scale,
re_ratio=args.re_ratio,
re_value=args.re_value,
re_max_attempts=args.re_max_attempts,
)
# load dataset
loader_train = create_loader(
dataset=dataset_train,
batch_size=args.batch_size,
drop_remainder=False,
is_training=True,
mixup=args.mixup,
cutmix=args.cutmix,
cutmix_prob=args.cutmix_prob,
num_classes=num_classes,
transform=transform_list,
num_parallel_workers=args.num_parallel_workers,
)
if args.val_while_train:
dataset_eval = create_dataset(
name=args.dataset,
root=args.data_dir,
split=args.val_split,
num_shards=device_num,
shard_id=rank_id,
num_parallel_workers=args.num_parallel_workers,
download=args.dataset_download,
)
transform_list_eval = create_transforms(
dataset_name=args.dataset,
is_training=False,
image_resize=args.image_resize,
crop_pct=args.crop_pct,
interpolation=args.interpolation,
mean=args.mean,
std=args.std,
)
loader_eval = create_loader(
dataset=dataset_eval,
batch_size=args.batch_size,
drop_remainder=False,
is_training=False,
transform=transform_list_eval,
num_parallel_workers=args.num_parallel_workers,
)
# validation dataset count
eval_count = dataset_eval.get_dataset_size()
if args.distribute:
eval_count = dist_sum(Tensor(eval_count, ms.int32))
num_batches = loader_train.get_dataset_size()
# Train dataset count
train_count = dataset_train.get_dataset_size()
if args.distribute:
train_count = dist_sum(Tensor(train_count, ms.int32))
# create model
network = create_model(
model_name=args.model,
num_classes=num_classes,
in_channels=args.in_channels,
drop_rate=args.drop_rate,
drop_path_rate=args.drop_path_rate,
pretrained=args.pretrained,
checkpoint_path=args.ckpt_path,
)
num_params = sum([param.size for param in network.get_parameters()])
# create loss
ms.amp.auto_mixed_precision(network, amp_level=args.amp_level)
loss = create_loss(
name=args.loss,
reduction=args.reduction,
label_smoothing=args.label_smoothing,
aux_factor=args.aux_factor,
)
# create learning rate schedule
lr_scheduler = create_scheduler(
num_batches,
scheduler=args.scheduler,
lr=args.lr,
min_lr=args.min_lr,
warmup_epochs=args.warmup_epochs,
warmup_factor=args.warmup_factor,
decay_epochs=args.decay_epochs,
decay_rate=args.decay_rate,
milestones=args.multi_step_decay_milestones,
num_epochs=args.epoch_size,
)
# resume training if ckpt_path is given
if args.ckpt_path != "" and args.resume_opt:
opt_ckpt_path = os.path.join(args.ckpt_save_dir, f"optim_{args.model}.ckpt")
else:
opt_ckpt_path = ""
# create optimizer
optimizer = create_optimizer(
network.trainable_params(),
opt=args.opt,
lr=lr_scheduler,
weight_decay=args.weight_decay,
momentum=args.momentum,
nesterov=args.use_nesterov,
filter_bias_and_bn=args.filter_bias_and_bn,
loss_scale=args.loss_scale,
checkpoint_path=opt_ckpt_path,
)
# set loss scale for mixed precision training
if args.amp_level != "O0":
loss_scaler = StaticLossScaler(args.loss_scale)
else:
loss_scaler = NoLossScaler()
# resume
begin_step = 0
begin_epoch = 0
if args.ckpt_path != "":
begin_step = optimizer.global_step.asnumpy()[0]
begin_epoch = args.ckpt_path.split("/")[-1].split("_")[0].split("-")[-1]
begin_epoch = int(begin_epoch)
# log
if rank_id in [None, 0]:
logger.info("-" * 40)
logger.info(
f"Num devices: {device_num if device_num is not None else 1} \n"
f"Distributed mode: {args.distribute} \n"
f"Num training samples: {train_count}"
)
if args.val_while_train:
logger.info(f"Num validation samples: {eval_count}")
logger.info(
f"Num classes: {num_classes} \n"
f"Num batches: {num_batches} \n"
f"Batch size: {args.batch_size} \n"
f"Auto augment: {args.auto_augment} \n"
f"Model: {args.model} \n"
f"Model param: {num_params} \n"
f"Num epochs: {args.epoch_size} \n"
f"Optimizer: {args.opt} \n"
f"LR: {args.lr} \n"
f"LR Scheduler: {args.scheduler}"
)
logger.info("-" * 40)
if args.ckpt_path != "":
logger.info(f"Resume training from {args.ckpt_path}, last step: {begin_step}, last epoch: {begin_epoch}")
else:
logger.info("Start training")
if not os.path.exists(args.ckpt_save_dir):
os.makedirs(args.ckpt_save_dir)
log_path = os.path.join(args.ckpt_save_dir, "result.log")
if not (os.path.exists(log_path) and args.ckpt_path != ""): # if not resume training
with open(log_path, "w") as fp:
fp.write("Epoch\tTrainLoss\tValAcc\tTime\n")
best_acc = 0
summary_dir = f"./{args.ckpt_save_dir}/summary_01"
# Training
need_flush_from_cache = True
assert (
args.ckpt_save_policy != "top_k" or args.val_while_train is True
), "ckpt_save_policy is top_k, val_while_train must be True."
manager = CheckpointManager(ckpt_save_policy=args.ckpt_save_policy)
with SummaryRecord(summary_dir) as summary_record:
for t in range(begin_epoch, args.epoch_size):
epoch_start = time()
train_loss = train_epoch(
network,
loader_train,
loss,
optimizer,
epoch=t,
n_epochs=args.epoch_size,
loss_scaler=loss_scaler,
reduce_fn=dist_sum,
summary_record=summary_record,
rank_id=rank_id,
log_interval=args.log_interval,
)
# val while train
test_acc = Tensor(-1.0)
if args.val_while_train:
if ((t + 1) % args.val_interval == 0) or (t + 1 == args.epoch_size):
if rank_id in [None, 0]:
logger.info("Validating...")
val_start = time()
test_acc = test_epoch(network, loader_eval, dist_sum, rank_id=rank_id)
test_acc = 100 * test_acc
if rank_id in [0, None]:
val_time = time() - val_start
logger.info(f"Val time: {val_time:.2f} \t Val acc: {test_acc:0.3f}")
if test_acc > best_acc:
best_acc = test_acc
save_best_path = os.path.join(args.ckpt_save_dir, f"{args.model}-best.ckpt")
ms.save_checkpoint(network, save_best_path, async_save=True)
logger.info(f"=> New best val acc: {test_acc:0.3f}")
# add to summary
current_step = (t + 1) * num_batches + begin_step
if not isinstance(test_acc, Tensor):
test_acc = Tensor(test_acc)
if summary_record is not None:
summary_record.add_value("scalar", "test_dataset_accuracy", test_acc)
summary_record.record(int(current_step))
# Save checkpoint
if rank_id in [0, None]:
if ((t + 1) % args.ckpt_save_interval == 0) or (t + 1 == args.epoch_size):
if need_flush_from_cache:
need_flush_from_cache = flush_from_cache(network)
ms.save_checkpoint(
optimizer, os.path.join(args.ckpt_save_dir, f"{args.model}_optim.ckpt"), async_save=True
)
save_path = os.path.join(args.ckpt_save_dir, f"{args.model}-{t + 1}_{num_batches}.ckpt")
ckpoint_filelist = manager.save_ckpoint(
network, num_ckpt=args.keep_checkpoint_max, metric=test_acc, save_path=save_path
)
if args.ckpt_save_policy == "top_k":
checkpoints_str = "Top K accuracy checkpoints: \n"
for ch in ckpoint_filelist:
checkpoints_str += "{}\n".format(ch)
logger.info(checkpoints_str)
else:
logger.info(f"Saving model to {save_path}")
epoch_time = time() - epoch_start
logger.info(f"Epoch {t + 1} time:{epoch_time:.3f}s")
logger.info("-" * 80)
with open(log_path, "a") as fp:
fp.write(f"{t+1}\t{train_loss.asnumpy():.7f}\t{test_acc.asnumpy():.3f}\t{epoch_time:.2f}\n")
logger.info("Done!")
def train_epoch(
network,
dataset,
loss_fn,
optimizer,
epoch,
n_epochs,
loss_scaler,
reduce_fn=None,
summary_record=None,
rank_id=None,
log_interval=100,
):
"""Training an epoch network"""
# Define forward function
def forward_fn(data, label):
logits = network(data)
loss = loss_fn(logits, label)
loss = loss_scaler.scale(loss)
return loss, logits
# Get gradient function
grad_fn = ops.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
if args.distribute:
mean = _get_gradients_mean()
degree = _get_device_num()
grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree)
else:
grad_reducer = ops.functional.identity
# Define function of one-step training
@ms.ms_function
def train_step(data, label):
(loss, logits), grads = grad_fn(data, label)
grads = grad_reducer(grads)
status = ms.amp.all_finite(grads)
if status:
loss = loss_scaler.unscale(loss)
grads = loss_scaler.unscale(grads)
loss = ops.depend(loss, optimizer(grads))
loss = ops.depend(loss, loss_scaler.adjust(status))
return loss, logits
network.set_train()
n_batches = dataset.get_dataset_size()
n_steps = n_batches * n_epochs
epoch_width, batch_width, step_width = len(str(n_epochs)), len(str(n_batches)), len(str(n_steps)) # noqa: F841
total, correct = 0, 0
start = time()
num_batches = dataset.get_dataset_size()
for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
loss, logits = train_step(data, label)
if len(label.shape) == 1:
correct += (logits.argmax(1) == label).asnumpy().sum()
else: # one-hot or soft label
correct += (logits.argmax(1) == label.argmax(1)).asnumpy().sum()
total += len(data)
if (batch + 1) % log_interval == 0 or (batch + 1) >= num_batches or batch == 0:
step = epoch * n_batches + batch
if optimizer.dynamic_lr:
cur_lr = optimizer.learning_rate(Tensor(step)).asnumpy()
else:
cur_lr = optimizer.learning_rate.asnumpy()
logger.info(
f"Epoch:[{epoch+1:{epoch_width}d}/{n_epochs:{epoch_width}d}], "
f"batch:[{batch+1:{batch_width}d}/{n_batches:{batch_width}d}], "
f"loss:{loss.asnumpy():8.6f}, lr: {cur_lr:.7f}, time:{time() - start:.6f}s"
)
start = time()
if rank_id in [0, None]:
if not isinstance(loss, Tensor):
loss = Tensor(loss)
if summary_record is not None:
summary_record.add_value("scalar", "loss", loss)
summary_record.record(step)
if args.distribute:
correct = reduce_fn(Tensor(correct, ms.float32))
total = reduce_fn(Tensor(total, ms.float32))
correct /= total
correct = correct.asnumpy()
else:
correct /= total
if rank_id in [0, None]:
logger.info(f"Training accuracy: {(100 * correct):0.3f}")
if not isinstance(correct, Tensor):
correct = Tensor(correct)
if summary_record is not None:
summary_record.add_value("scalar", "train_dataset_accuracy", correct)
summary_record.record(step)
return loss
def test_epoch(network, dataset, reduce_fn=None, rank_id=None):
"""Test network accuracy and loss."""
network.set_train(False) # TODO: check freeze
correct, total = 0, 0
for data, label in tqdm(dataset.create_tuple_iterator()):
pred = network(data)
total += len(data)
if len(label.shape) == 1:
correct += (pred.argmax(1) == label).asnumpy().sum()
else: # one-hot or soft label
correct += (pred.argmax(1) == label.argmax(1)).asnumpy().sum()
if rank_id is not None:
# dist_sum = AllReduceSum()
correct = reduce_fn(Tensor(correct, ms.float32))
total = reduce_fn(Tensor(total, ms.float32))
correct /= total
correct = correct.asnumpy()
else:
correct /= total
return correct
def flush_from_cache(network):
"""Flush cache data to host if tensor is cache enable."""
has_cache_params = False
params = network.get_parameters()
for param in params:
if param.cache_enable:
has_cache_params = True
Tensor(param).flush_from_cache()
if not has_cache_params:
need_flush_from_cache = False
else:
need_flush_from_cache = True
return need_flush_from_cache
if __name__ == "__main__":
args = parse_args()
# data sync for cloud platform if enabled
if args.enable_modelarts:
import moxing as mox
args.data_dir = f"/cache/{args.data_url}"
mox.file.copy_parallel(src_url=os.path.join(args.data_url, args.dataset), dst_url=args.data_dir)
train(args)
if args.enable_modelarts:
mox.file.copy_parallel(src_url=args.ckpt_save_dir, dst_url=args.train_url)