forked from shunliz/Machine-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spark-factor.md
194 lines (124 loc) · 9.76 KB
/
spark-factor.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Spark矩阵分解推荐算法
---
在[矩阵分解在协同过滤推荐算法中的应用](/ml/recommand/matrix-filter.md)中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法。
# 1. Spark推荐算法概述
在Spark MLlib中,推荐算法这块只实现了基于矩阵分解的协同过滤推荐算法。而基于的算法是FunkSVD算法,即将m个用户和n个物品对应的评分矩阵M分解为两个低维的矩阵:$$M_{m \times n}=P_{m \times k}^TQ_{k \times n}$$
其中k为分解成低维的维数,一般远比m和n小。如果大家对FunkSVD算法不熟悉,可以复习对应的原理篇。
# 2. Spark推荐算法类库介绍
在Spark MLlib中,实现的FunkSVD算法支持Python,Java,Scala和R的接口。由于前面的实践篇我们都是基于Python,本文的后面的介绍和使用也会使用MLlib的Python接口。
Spark MLlib推荐算法python对应的接口都在pyspark.mllib.recommendation包中,这个包有三个类,Rating, MatrixFactorizationModel和ALS。虽然里面有三个类,但是算法只是FunkSVD算法。下面介绍这三个类的用途。
Rating类比较简单,仅仅只是为了封装用户,物品与评分这3个值。也就是说,Rating类里面只有用户,物品与评分三元组, 并没有什么函数接口。
ALS负责训练我们的FunkSVD模型。之所以这儿用交替最小二乘法ALS表示,是因为Spark在FunkSVD的矩阵分解的目标函数优化时,使用的是ALS。ALS函数有两个函数,一个是train,这个函数直接使用我们的评分矩阵来训练数据,而另一个函数trainImplicit则稍微复杂一点,它使用隐式反馈数据来训练模型,和train函数相比,它多了一个指定隐式反馈信心阈值的参数,比如我们可以将评分矩阵转化为反馈数据矩阵,将对应的评分值根据一定的反馈原则转化为信心权重值。由于隐式反馈原则一般要根据具体的问题和数据来定,本文后面只讨论普通的评分矩阵分解。
MatrixFactorizationModel类是我们用ALS类训练出来的模型,这个模型可以帮助我们做预测。常用的预测有某一用户和某一物品对应的评分,某用户最喜欢的N个物品,某物品可能会被最喜欢的N个用户,所有用户各自最喜欢的N物品,以及所有物品被最喜欢的N个用户。
对于这些类的用法我们再后面会有例子讲解。
# 3. Spark推荐算法重要类参数
这里我们再对ALS训练模型时的重要参数做一个总结。
1\) **ratings**: 评分矩阵对应的RDD。需要我们输入。如果是隐式反馈,则是评分矩阵对应的隐式反馈矩阵。
2\) **rank** : 矩阵分解时对应的低维的维数。即$$P_{m \times k}^TQ_{k \times n}$$中的维度k。这个值会影响矩阵分解的性能,越大则算法运行的时间和占用的内存可能会越多。通常需要进行调参,一般可以取10-200之间的数。
3\) **iterations** :在矩阵分解用交替最小二乘法求解时,进行迭代的最大次数。这个值取决于评分矩阵的维度,以及评分矩阵的系数程度。一般来说,不需要太大,比如5-20次即可。默认值是5。
4\) **lambda**: 在 python接口中使用的是lambda\_,原因是lambda是Python的保留字。这个值即为FunkSVD分解时对应的正则化系数。主要用于控制模型的拟合程度,增强模型泛化能力。取值越大,则正则化惩罚越强。大型推荐系统一般需要调参得到合适的值。
5\) **alpha** : 这个参数仅仅在使用隐式反馈trainImplicit时有用。指定了隐式反馈信心阈值,这个值越大则越认为用户和他没有评分的物品之间没有关联。一般需要调参得到合适值。
从上面的描述可以看出,使用ALS算法还是蛮简单的,需要注意调参的参数主要的是矩阵分解的维数rank, 正则化超参数lambda。如果是隐式反馈,还需要调参隐式反馈信心阈值alpha 。
# 4. Spark推荐算法实例
下面我们用一个具体的例子来讲述Spark矩阵分解推荐算法的使用。
这里我们使用MovieLens 100K的数据,[数据下载链接在这](http://files.grouplens.org/datasets/movielens/ml-100k.zip)。
将数据解压后,我们只使用其中的u.data文件中的评分数据。这个数据集每行有4列,分别对应用户ID,物品ID,评分和时间戳。由于我的机器比较破,在下面的例子中,我只使用了前100条数据。因此如果你使用了所有的数据,后面的预测结果会与我的不同。
首先需要要确保你安装好了Hadoop和Spark(版本不小于1.6),并设置好了环境变量。一般我们都是在ipython notebook\(jupyter notebook\)中学习,所以最好把基于notebook的Spark环境搭好。当然不搭notebook的Spark环境也没有关系,只是每次需要在运行前设置环境变量。
如果你没有搭notebook的Spark环境,则需要先跑下面这段代码。当然,如果你已经搭好了,则下面这段代码不用跑了。
```
import os
import sys
#下面这些目录都是你自己机器的Spark安装目录和Java安装目录
os.environ['SPARK_HOME'] = "C:/Tools/spark-1.6.1-bin-hadoop2.6/"
sys.path.append("C:/Tools/spark-1.6.1-bin-hadoop2.6/bin")
sys.path.append("C:/Tools/spark-1.6.1-bin-hadoop2.6/python")
sys.path.append("C:/Tools/spark-1.6.1-bin-hadoop2.6/python/pyspark")
sys.path.append("C:/Tools/spark-1.6.1-bin-hadoop2.6/python/lib")
sys.path.append("C:/Tools/spark-1.6.1-bin-hadoop2.6/python/lib/pyspark.zip")
sys.path.append("C:/Tools/spark-1.6.1-bin-hadoop2.6/python/lib/py4j-0.9-src.zip")
sys.path.append("C:/Program Files (x86)/Java/jdk1.8.0_102")
from pyspark import SparkContext
from pyspark import SparkConf
sc = SparkContext("local", "testing")
```
```
print sc
```
比如我的输出是:
```
<pyspark.context.SparkContext object at 0x07352950>
```
首先我们将u.data文件读入内存,并尝试输出第一行的数据来检验是否成功读入,注意复制代码的时候,数据的目录要用你自己的u.data的目录。代码如下:
```
#下面目录要用解压后u.data所在的目录
user_data = sc.textFile("C:/Temp/ml-100k/u.data")
user_data.first()
```
输出如下:
```
u'196\t242\t3\t881250949'
```
可以看到数据是用\t分开的,我们需要将每行的字符串划开,成为数组,并只取前三列,不要时间戳那一列。代码如下:
```
rates = user_data.map(lambda x: x.split("\t")[0:3])
print rates.first()
```
输出如下:
```
[u'196', u'242', u'3']
```
此时虽然我们已经得到了评分矩阵数组对应的RDD,但是这些数据都还是字符串,Spark需要的是若干Rating类对应的数组。因此我们现在将RDD的数据类型做转化,代码如下:
```
from pyspark.mllib.recommendation import Rating
rates_data = rates.map(lambda x: Rating(int(x[0]),int(x[1]),int(x[2])))
print rates_data.first()
```
输出如下:
```
Rating(user=196, product=242, rating=3.0)
```
可见我们的数据已经是基于Rating类的RDD了,现在我们终于可以把整理好的数据拿来训练了,代码如下, 我们将矩阵分解的维度设置为20,最大迭代次数设置为5,而正则化系数设置为0.02。在实际应用中,我们需要通过交叉验证来选择合适的矩阵分解维度与正则化系数。这里我们由于是实例,就简化了。
```
from pyspark.mllib.recommendation import ALS
from pyspark.mllib.recommendation import MatrixFactorizationModel
sc.setCheckpointDir('checkpoint/')
ALS.checkpointInterval = 2
model = ALS.train(ratings=rates_data, rank=20, iterations=5, lambda_=0.02)
```
将模型训练完毕后,我们终于可以来做推荐系统的预测了。
首先做一个最简单的预测,比如预测用户38对物品20的评分。代码如下:
```
print model.predict(38,20)
```
输出如下:
```
0.311633491603
```
可见评分并不高。
现在我们来预测了用户38最喜欢的10个物品,代码如下:
```
print model.recommendProducts(38,10)
```
输出如下:
```
[Rating(user=38, product=95, rating=4.995227969811873), Rating(user=38, product=304, rating=2.5159673379104484), Rating(user=38, product=1014, rating=2.165428673820349), Rating(user=38, product=322, rating=1.7002266119079879), Rating(user=38, product=111, rating=1.2057528774266673), Rating(user=38, product=196, rating=1.0612630766055788), Rating(user=38, product=23, rating=1.0590775012913558), Rating(user=38, product=327, rating=1.0335651317559753), Rating(user=38, product=98, rating=0.9677333686628911), Rating(user=38, product=181, rating=0.8536682271006641)]
```
可以看出用户38可能喜欢的对应评分从高到低的10个物品。
接着我们来预测下物品20可能最值得推荐的10个用户,代码如下:
```
print model.recommendUsers(20,10)
```
输出如下:
```
[Rating(user=115, product=20, rating=2.9892138653406635), Rating(user=25, product=20, rating=1.7558472892444517), Rating(user=7, product=20, rating=1.523935609195585), Rating(user=286, product=20, rating=1.3746309116764184), Rating(user=222, product=20, rating=1.313891405211581), Rating(user=135, product=20, rating=1.254412853860262), Rating(user=186, product=20, rating=1.2194811581542384), Rating(user=72, product=20, rating=1.1651855319930426), Rating(user=241, product=20, rating=1.0863391992741023), Rating(user=160, product=20, rating=1.072353288848142)]
```
现在我们来看看每个用户最值得推荐的三个物品,代码如下:
```
print model.recommendProductsForUsers(3).collect()
```
由于输出非常长,这里就不将输出copy过来了。
而每个物品最值得被推荐的三个用户,代码如下:
```
print model.recommendUsersForProducts(3).collect()
```
同样由于输出非常长,这里就不将输出copy过来了。