-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfedprox_femnist.py
345 lines (292 loc) · 12.7 KB
/
fedprox_femnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import json
import warnings
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.data as torchdata
from ..models import nn as mnn
from ..models.utils import top_n_accuracy
from ..utils._download_data import url_is_reachable
from ..utils.const import CACHED_DATA_DIR
from ._register import register_fed_dataset
from .fed_dataset import FedVisionDataset
__all__ = [
"FedProxFEMNIST",
]
FEDPROX_FEMNIST_DATA_DIR = CACHED_DATA_DIR / "fedprox_femnist"
FEDPROX_FEMNIST_DATA_DIR.mkdir(parents=True, exist_ok=True)
_label_mapping = {i: c for i, c in enumerate("abcdefghijklmnopqrstuvwxyz"[:10])}
@register_fed_dataset()
class FedProxFEMNIST(FedVisionDataset):
"""A subset of the federeated EMNIST proposed in FedProx.
This dataset is proposed in the FedProx paper [1]_
and used in the FedDR paper [2]_.
`The FEMNIST data we used in the paper is a subsampled (and repartitioned) version
of the original full dataset in order to impose additional statistical heterogeneity.
The above dataset is generated by the following instruction: ...`
NOTE that this dataset is not the same as the original FEMNIST dataset,
containing only 10 classes (a-j), instead of 62 classes (a-z, A-Z, 0-9).
The raw data has been processed using min-max normalization to range [0, 1],
hence any further augmentation is perhaps inappropriate.
Parameters
----------
datadir : Union[pathlib.Path, str], optional
Directory to store data.
If ``None``, use default directory.
transform : Union[str, Callable], default "none"
Transform to apply to data. Conventions:
``"none"`` means no transform, using TensorDataset.
seed : int, default 0
Random seed for data partitioning.
**extra_config : dict, optional
Extra configurations.
References
----------
.. [1] https://github.com/litian96/FedProx/tree/master/data/nist
.. [2] https://github.com/unc-optimization/FedDR
"""
__name__ = "FedProxFEMNIST"
def _preload(self, datadir: Optional[Union[str, Path]] = None) -> None:
"""Preload the dataset.
Parameters
----------
datadir : Union[pathlib.Path, str], optional
Directory to store data.
If ``None``, use default directory.
Returns
-------
None
"""
self.datadir = Path(datadir or FEDPROX_FEMNIST_DATA_DIR).expanduser().resolve()
self.DEFAULT_TRAIN_CLIENTS_NUM = 200
self.DEFAULT_TEST_CLIENTS_NUM = 200
self.DEFAULT_BATCH_SIZE = 20
self.DEFAULT_TRAIN_FILE = Path("train") / Path("mytrain.json")
self.DEFAULT_TEST_FILE = Path("test") / Path("mytest.json")
self._EXAMPLE = "user_data"
self._IMGAE = "x"
self._LABEL = "y"
if self.transform != "none":
warnings.warn(
"The images are not raw pixels, but processed. " "The transform argument will be ignored.",
RuntimeWarning,
)
self.transform = "none"
self.criterion = torch.nn.CrossEntropyLoss()
self.download_if_needed()
# client id list
train_file_path = self.datadir / self.DEFAULT_TRAIN_FILE
test_file_path = self.datadir / self.DEFAULT_TEST_FILE
self._train_data_dict = json.loads(train_file_path.read_text())
self._test_data_dict = json.loads(test_file_path.read_text())
self._client_ids_train = self._train_data_dict["users"]
self._client_ids_test = self._test_data_dict["users"]
self._n_class = len(
np.unique(
np.concatenate(
[
self._train_data_dict[self._EXAMPLE][self._client_ids_train[idx]][self._LABEL]
for idx in range(self.DEFAULT_TRAIN_CLIENTS_NUM)
]
)
)
)
def get_dataloader(
self,
train_bs: Optional[int] = None,
test_bs: Optional[int] = None,
client_idx: Optional[int] = None,
) -> Tuple[torchdata.DataLoader, torchdata.DataLoader]:
"""Get local dataloader at client `client_idx` or get the global dataloader.
Parameters
----------
train_bs : int, optional
Batch size for training dataloader.
If ``None``, use default batch size.
test_bs : int, optional
Batch size for testing dataloader.
If ``None``, use default batch size.
client_idx : int, optional
Index of the client to get dataloader.
If ``None``, get the dataloader containing all data.
Usually used for centralized training.
Returns
-------
train_dl : :class:`torch.utils.data.DataLoader`
Training dataloader.
test_dl : :class:`torch.utils.data.DataLoader`
Testing dataloader.
"""
# load data
if client_idx is None:
# get ids of all clients
train_ids = self._client_ids_train
test_ids = self._client_ids_test
else:
# get ids of single client
train_ids = [self._client_ids_train[client_idx]]
test_ids = [self._client_ids_test[client_idx]]
# load data
train_x = np.vstack([self._train_data_dict[self._EXAMPLE][client_id][self._IMGAE] for client_id in train_ids])
train_y = np.concatenate([self._train_data_dict[self._EXAMPLE][client_id][self._LABEL] for client_id in train_ids])
test_x = np.vstack([self._test_data_dict[self._EXAMPLE][client_id][self._IMGAE] for client_id in test_ids])
test_y = np.concatenate([self._test_data_dict[self._EXAMPLE][client_id][self._LABEL] for client_id in test_ids])
# dataloader
train_ds = torchdata.TensorDataset(
torch.from_numpy(train_x.reshape((-1, 28, 28)).astype(np.float32)).unsqueeze(1),
torch.from_numpy(train_y.astype(np.int64)),
)
train_dl = torchdata.DataLoader(
dataset=train_ds,
batch_size=train_bs or self.DEFAULT_BATCH_SIZE,
shuffle=True,
drop_last=False,
)
test_ds = torchdata.TensorDataset(
torch.from_numpy(test_x.reshape((-1, 28, 28)).astype(np.float32)).unsqueeze(1),
torch.from_numpy(test_y.astype(np.int64)),
)
test_dl = torchdata.DataLoader(
dataset=test_ds,
batch_size=test_bs or self.DEFAULT_BATCH_SIZE,
shuffle=True,
drop_last=False,
)
return train_dl, test_dl
def extra_repr_keys(self) -> List[str]:
return [
"n_class",
] + super().extra_repr_keys()
def evaluate(self, probs: torch.Tensor, truths: torch.Tensor) -> Dict[str, float]:
"""Evaluation using predictions and ground truth.
Parameters
----------
probs : torch.Tensor
Predicted probabilities.
truths : torch.Tensor
Ground truth labels.
Returns
-------
Dict[str, float]
Evaluation results.
"""
return {
"acc": top_n_accuracy(probs, truths, 1),
"top3_acc": top_n_accuracy(probs, truths, 3),
"top5_acc": top_n_accuracy(probs, truths, 5),
"loss": self.criterion(probs, truths).item(),
"num_samples": probs.shape[0],
}
@property
def url(self) -> str:
"""URL for downloading the dataset."""
# https://drive.google.com/file/d/1tCEcJgRJ8NdRo11UJZR6WSKMNdmox4GC/view?usp=sharing
# "http://218.245.5.12/NLP/federated/fedprox-femnist.zip"
if url_is_reachable("https://www.dropbox.com"):
return "https://www.dropbox.com/s/55ibep82qqars9w/fedprox-femnist.zip?dl=1"
else:
return "https://deep-psp.tech/Data/FL/fedprox-femnist.zip"
@property
def candidate_models(self) -> Dict[str, torch.nn.Module]:
"""A set of candidate models."""
return {
"cnn_femmist_tiny": mnn.CNNFEMnist_Tiny(num_classes=self.n_class),
"cnn_femmist": mnn.CNNFEMnist(num_classes=self.n_class),
# "resnet10": mnn.ResNet10(num_classes=self.n_class),
"mlp": mnn.MLP(dim_in=28 * 28, dim_out=self.n_class, ndim=2),
}
@property
def doi(self) -> List[str]:
"""DOIs related to the dataset."""
return [
"10.1109/5.726791", # MNIST
"10.1109/ijcnn.2017.7966217", # EMNIST
"10.48550/ARXIV.1812.01097", # LEAF
"10.48550/ARXIV.1812.06127", # FedProx
]
@property
def label_map(self) -> dict:
"""Label map for the dataset."""
return _label_mapping
def view_image(self, client_idx: int, image_idx: int) -> None:
"""View a single image.
Parameters
----------
client_idx : int
Index of the client on which the image is located.
image_idx : int
Index of the image in the client.
Returns
-------
None
"""
import matplotlib.pyplot as plt
if client_idx >= len(self._train_data_dict["users"]):
raise ValueError(f"client_idx must be less than {len(self._train_data_dict['users'])}")
client_id = self._train_data_dict["users"][client_idx]
total_num_images = len(self._train_data_dict[self._EXAMPLE][client_id][self._IMGAE]) + len(
self._test_data_dict[self._EXAMPLE][client_id][self._IMGAE]
)
if image_idx >= total_num_images:
raise ValueError(f"image_idx must be less than {total_num_images} (total number of images)")
if image_idx < len(self._train_data_dict[self._EXAMPLE][client_id][self._IMGAE]):
image = (
np.array(self._train_data_dict[self._EXAMPLE][client_id][self._IMGAE])[image_idx].reshape(28, 28) * 255
).astype(np.uint8)
label = self._train_data_dict[self._EXAMPLE][client_id][self._LABEL][image_idx]
else:
image_idx -= len(self._train_data_dict[self._EXAMPLE][client_id][self._IMGAE])
image = (
np.array(self._test_data_dict[self._EXAMPLE][client_id][self._IMGAE])[image_idx].reshape(28, 28) * 255
).astype(np.uint8)
label = self._train_data_dict[self._EXAMPLE][client_id][self._LABEL][image_idx]
plt.imshow(image, cmap="gray")
plt.title(f"client_id: {client_id}, label: {label} ({self.label_map[int(label)]})")
plt.show()
def random_grid_view(self, nrow: int, ncol: int, save_path: Optional[Union[str, Path]] = None) -> None:
"""Select randomly `nrow` x `ncol` images from the dataset
and plot them in a grid.
Parameters
----------
nrow : int
Number of rows in the grid.
ncol : int
Number of columns in the grid.
save_path : Union[str, Path], optional
Path to save the figure. If ``None``, do not save the figure.
Returns
-------
None
"""
import matplotlib.pyplot as plt
rng = np.random.default_rng()
fig, axes = plt.subplots(nrow, ncol, figsize=(ncol * 1, nrow * 1))
selected = []
for i in range(nrow):
for j in range(ncol):
while True:
client_idx = rng.integers(len(self._train_data_dict["users"]))
client_id = self._train_data_dict["users"][client_idx]
total_num_images = len(self._train_data_dict[self._EXAMPLE][client_id][self._IMGAE]) + len(
self._test_data_dict[self._EXAMPLE][client_id][self._IMGAE]
)
image_idx = rng.integers(total_num_images)
if (client_idx, image_idx) not in selected:
selected.append((client_idx, image_idx))
break
if image_idx < len(self._train_data_dict[self._EXAMPLE][client_id][self._IMGAE]):
image = (
np.array(self._train_data_dict[self._EXAMPLE][client_id][self._IMGAE])[image_idx].reshape(28, 28) * 255
).astype(np.uint8)
else:
image_idx -= len(self._train_data_dict[self._EXAMPLE][client_id][self._IMGAE])
image = (
np.array(self._test_data_dict[self._EXAMPLE][client_id][self._IMGAE])[image_idx].reshape(28, 28) * 255
).astype(np.uint8)
axes[i, j].imshow(image, cmap="gray")
axes[i, j].axis("off")
if save_path is not None:
fig.savefig(save_path, bbox_inches="tight", dpi=600)
plt.tight_layout()
plt.show()