-
Notifications
You must be signed in to change notification settings - Fork 0
/
resume.html
209 lines (198 loc) · 12.1 KB
/
resume.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
<!DOCTYPE HTML>
<!--
Forty by HTML5 UP
html5up.net | @ajlkn
Free for personal and commercial use under the CCA 3.0 license (html5up.net/license)
-->
<html>
<head>
<title>Resume</title>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no" />
<link rel="stylesheet" href="assets/css/main.css" />
<noscript><link rel="stylesheet" href="assets/css/noscript.css" /></noscript>
</head>
<body class="is-preload">
<!-- Wrapper -->
<div id="wrapper">
<!-- Header -->
<header id="header">
<a href="index.html" class="logo">Fat Badger Productions</a>
<nav>
<a href="#menu">Menu</a>
</nav>
</header>
<!-- Menu -->
<nav id="menu">
<ul class="links">
<li><a href="index.html">Home</a></li>
<li><a href="resume.html">Resume</a></li>
<li><a href="lets_work.html">Let's Work Together</a></li>
<li><a href="https://bittersweet-bugle-b74.notion.site/Landing-Page-1cbb1f8391b74915ab5a6ce83ea07568">Blog</a></li>
</ul>
<ul class="actions stacked">
<li><a href="lets_work.html" class="button primary fit">Contact Me</a></li>
</ul>
</nav>
<!-- Main -->
<div id="main" class="alt">
<!-- One -->
<section id="one">
<div class="inner">
<header class="major">
<h1>Who Am I?</h1>
</header>
<span class="image main"><img src="images/pic12.jpg" alt="" /></span>
<h2>Technical Experience</h2>
<p><img src="images/aprime.jpeg" alt="" height="3%" width="3%" style="float:left;padding-right: 10px;"><a href="https://aprime.io/">APrime Technology</a> Senior Software Engineer 2022-Present</p>
<p>
During my time at APrime, I was a consultant that focused primarily on data engineering and devops.
During my time consulting, I worked with companies ranging from pre-seed funding all the way through Series
B companies across industries including ETF investmenting, usage-based billing platforms, benefits
reimbursal, and many others. For larger companies I worked embedded in existing engineering teams and
for smaller companies I worked more greenfield suggesting and implementing best practices. Because of this,
I worked with a wide-range of different technologies and languages that addressed problems such as running a
a GCP to AWS cloud migration, full private VPC migration, in-place kubernetes upgrades, custom Go based
migration tool, full end-to-end machine learning pipeline using Prefect and R, migration of AWS Step
Functions to Dagster, deployment of Argo Rollouts and ArgoCD, and others.
</p>
<p><img src="images/nytimes.jpeg" alt="" height="3%" width="3%" style="float:left;padding-right: 10px;"><a href="https://www.nytimes.com/">New York Times</a> Senior Software Engineer; Machine Learning Infrastructure 2021-2022</p>
<p>
My title at the New York Times is a bit wordy, but I, essentially, worked on the machine learning platform
team that was in charge of serving all recommendations to end users. This includes things like recommending
articles that a user might like, generating a top-5 of articles to read for a user, and creating a newsletter
to drive users to the frontpage. I focused mostly on revamping the CI/CD process during this time to reduce
deploy times as well as migrating our kubernetes cluster to a service mesh to allow for shadow and canary
deployments.<br>
Our endpoints received thousands of requests per second and we had a SLA of around 100 milliseconds to return
a response to the internal gateway API. Given this, all of our models were written and experimented in Python
but then subsequently translated into Golang to provide the best latency possible.
</p>
<p><img src="images/bark.jpeg" alt="" height="3%" width="3%" style="float:left;padding-right: 10px;"><a href="https://bark.co/">Bark</a> Data Scientist to Machine Learning Engineer 2019-2021</p></p>
<p>
I worked in a number of different roles at Bark, but I started as a data scientist and worked my up to a machine
learning engineer. This meant that I started off working on our recommendation engine that we used to try and get
users to add extra products to their monthly shipments. But, this also spun off into projects including trying
to predict an estimated time of delivery and running survival analysis on our subscribers. Over time, though,
I need to work further and further back in the stack and started shifting my focus from just the model but to the
whole model lifecycle (i.e. how do we deploy, monitor, and update models safely). This involved standardizing all
of our model training using KubeFlow (on GCP) to deploying models with TensorFlow Serving.<br>
Of course, there were a number of other projects that came up, as is common in any startup. I migrated our MongoDB
instance to Amazon Redshift, did some causal analysis to try and determine the effectives of our interventions in
preventing subscriber churn, improved our sampling weighting to better capture a stratified random sample for our
NPS survey, and creating a microservice to deploy our predictions rather than running everything as a batch process.
</p>
<p><img src="images/trendalytics.jpeg" alt="" height="3%" width="3%" style="float:left;padding-right: 10px;"><a href="https://www.trendalytics.co/">Trendalytics</a> Software Engineer; Machine Learning 2018-2019</p></p>
<p>
We were focused here on doing lots of image segmentation, image processing, and time-series analysis to try and
predict upcoming fashion trends for clients. Most of my time here was spent on improving our implementation of the
Yolo algorithm we were using for image segmentation and also looking at how we can combine a bunch of different
model outputs (i.e. keyword search trends, NLP text extractions, and image vectors) into one singular usable score
for our clients to action upon.
</p>
<p><img src="images/ihme.jpeg" alt="" height="3%" width="3%" style="float:left;padding-right: 10px;"><a href="https://www.healthdata.org/">Institute for Health Metrics and Evaluation</a> Data Analyst, Machine Learning Data Specialist 2016-2018</p></p>
<p><img src="images/nhgri.jpeg" alt="" height="3%" width="3%" style="float:left;padding-right: 10px;"><a href="https://www.genome.gov/">National Human Genome Research Institute</a> Data Analyst 2014-2016</p></p>
<h2>Competencies</h2>
<p>Cloud Computing Environments: 
<a href="https://aws.amazon.com/">AWS</a>, <a href="https://cloud.google.com/">GCP</a>, <a href="https://azure.microsoft.com/en-us">Azure</a>
</p>
<p>Container Orchestration: 
<a href="https://kubernetes.io/">Kubernetes</a>, <a href="https://helm.sh/">Helm</a>, <a href="https://kustomize.io/">Kustomize</a>, <a href="https://grafana.com/">Grafana</a>, <a href="https://argoproj.github.io/rollouts/">Argo Rollouts</a>, <a href="https://istio.io/">Istio</a>
</p>
<p>Machine Learning Platforms: 
<a href="https://aws.amazon.com/sagemaker/">SageMaker</a>, <a href="https://cloud.google.com/vertex-ai">Vertex</a>, <a href="https://www.kubeflow.org/">KubeFlow</a>, <a href="https://www.databricks.com/">DataBricks</a>
</p>
<p>Infrastructure as Code: 
<a href="https://www.terraform.io/">Terraform</a>, <a href="https://terragrunt.gruntwork.io/">Terragrunt</a>, <a href="https://www.runatlantis.io/">Atlantis</a>
</p>
<p>CI/CD: 
<a href="https://circleci.com/">CircleCI</a>, <a href="https://about.gitlab.com/">GitLab</a>, <a href="https://github.com/features/actions">GitHub Actions</a>, <a href="https://www.drone.io/">Drone CI</a>
</p>
<p>Data Engineering Platforms: 
<a href="https://www.prefect.io/">Prefect</a>, <a href="https://dagster.io/">Dagster</a>, <a href="https://airflow.apache.org/">Airflow</a>
</p>
<p>Languages: 
<a href="https://go.dev/">Golang</a>, <a href="https://www.python.org/">Python</a>, <a href="https://www.typescriptlang.org/">TypeScript</a>, <a href="https://www.r-project.org/">R</a>, <a href="https://www.stata.com/">Stata</a>
</p>
<p>Data Stores & Data Streaming: 
<a href="https://www.postgresql.org/">PostgreSQL</a>, <a href="https://www.mysql.com/">MySQL</a>, <a href="https://graphql.org/">GraphQL</a>, <a href="https://www.mongodb.com/">MongoDB</a>, <a href="https://www.confluent.io/">Confluent</a>, <a href="https://www.elastic.co/elasticsearch">ElasticSearch</a>
</p>
<h2>Education</h2>
<p><a href="https://www.wur.nl/">Wageningen University</a>: <a href="https://www.wur.nl/en/education-programmes/master/msc-programmes/msc-data-science-for-food-and-health.htm">Master's Data Science for Food and Health</p></a>
<p><a href="https://www.haverford.edu/">Haverford College</a>: Bachelor's in Biochemistry, Minor in Art History</p>
</div>
</section>
</div>
<!-- Contact -->
<section id="contact">
<div class="inner">
<section>
<form method="post" action="https://westford14-github-io.onrender.com/submit">
<div class="fields">
<div class="field half">
<label for="name">Name</label>
<input type="text" name="name" id="name" />
</div>
<div class="field half">
<label for="email">Email</label>
<input type="text" name="email" id="email" />
</div>
<div class="field">
<label for="message">Message</label>
<textarea name="message" id="message" rows="6"></textarea>
</div>
</div>
<ul class="actions">
<li><input type="submit" value="Send Message" class="primary" /></li>
<li><input type="reset" value="Clear" /></li>
</ul>
</form>
</section>
<section class="split">
<section>
<div class="contact-method">
<span class="icon solid alt fa-envelope"></span>
<h3>Email</h3>
<a href="mailto:[email protected]">[email protected]</a>
</div>
</section>
<section>
<div class="contact-method">
<span class="icon solid alt fa-phone"></span>
<h3>WhatsApp</h3>
<span>+1-404-805-4916</span>
</div>
</section>
<section>
<div class="contact-method">
<span class="icon solid alt fa-home"></span>
<h3>Location</h3>
<span>Arnhem, Netherlands</span>
</div>
</section>
</section>
</div>
</section>
<!-- Footer -->
<footer id="footer">
<div class="inner">
<ul class="icons">
<li><a href="https://github.com/westford14" class="icon brands alt fa-github"><span class="label">GitHub</span></a></li>
<li><a href="https://www.linkedin.com/in/alex-lee-59078979/" class="icon brands alt fa-linkedin-in"><span class="label">LinkedIn</span></a></li>
</ul>
<ul class="copyright">
<li>© 2024</li><li>Design: <a href="https://html5up.net">HTML5 UP</a></li>
</ul>
</div>
</footer>
</div>
<!-- Scripts -->
<script src="assets/js/jquery.min.js"></script>
<script src="assets/js/jquery.scrolly.min.js"></script>
<script src="assets/js/jquery.scrollex.min.js"></script>
<script src="assets/js/browser.min.js"></script>
<script src="assets/js/breakpoints.min.js"></script>
<script src="assets/js/util.js"></script>
<script src="assets/js/main.js"></script>
</body>
</html>