-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdata_mimic.py
434 lines (383 loc) · 17.7 KB
/
data_mimic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union
from dataclasses import dataclass
import torch
import os
from torch.utils.data import Dataset
from constant import DATA_DIR, MIMIC_2_DIR, MIMIC_3_DIR, ICD_50_RANK
import sys
import re
import pandas as pd
import numpy as np
import csv
import ujson, json
from collections import defaultdict
InputDataClass = NewType("InputDataClass", Any)
def proc_text(text):
text = text.lower().replace("\n"," ").replace("\r"," ")
text = re.sub('dr\.','doctor',text)
text = re.sub('m\.d\.','doctor',text)
text = re.sub('admission date:','',text)
text = re.sub('discharge date:','',text)
text = re.sub('--|__|==','',text)
return re.sub(r' +', ' ', text)
def get_headersandindex(input_str):
input_str = input_str.lower()
headers_to_select = ["chief complaint:", "major surgical or invasive procedure:", "procedure:", "history of present illness:", "past eedical history:", "brief hospital course:", "discharge diagnosis:", "discharge diagnoses:", "discharge condition:"]
strs = input_str.split("\n")
headers = []
for str_tmp in strs:
str_tmp = str_tmp.strip()
if len(str_tmp)>0 and str_tmp[-1] == ':':
headers.append(str_tmp)
headers_pos = []
last_index = 0
for header in headers:
starts = last_index + input_str[last_index:].index(header)
last_index = starts + len(header)
headers_pos.append((header,starts))
headers_pos += [("end:", len(input_str))]
counta = 0
finals = []
while counta < len(headers_pos)-1:
(header,starts) = headers_pos[counta]
if header in headers_to_select:
finals.append((header, starts, headers_pos[counta+1][1])) # (section headername, start of section, end of section)
counta += 1
return finals
def get_subnote(input_str, headers_pos):
result = ""
for (header, starts, ends) in headers_pos:
result += input_str[starts:ends]
return result
def create_main_code(ind2c):
mc = list(set([c.split('.')[0] for c in set(ind2c.values())]))
mc.sort()
ind2mc = {ind:mc for ind, mc in enumerate(mc)}
mc2ind = {mc:ind for ind, mc in ind2mc.items()}
return ind2mc, mc2ind
def reformat(code, is_diag):
"""
Put a period in the right place because the MIMIC-3 data files exclude them.
Generally, procedure codes have dots after the first two digits,
while diagnosis codes have dots after the first three digits.
"""
code = ''.join(code.split('.'))
if is_diag:
if code.startswith('E'):
if len(code) > 4:
code = code[:4] + '.' + code[4:]
else:
if len(code) > 3:
code = code[:3] + '.' + code[3:]
else:
code = code[:2] + '.' + code[2:]
return code
def load_code_descriptions(version='mimic3'):
# load description lookup from the appropriate data files
desc_dict = defaultdict(str)
if version == 'mimic2':
with open('%s/MIMIC_ICD9_mapping' % MIMIC_2_DIR, 'r') as f:
r = csv.reader(f)
# header
next(r)
for row in r:
desc_dict[str(row[1])] = str(row[2])
else:
with open("%s/D_ICD_DIAGNOSES.csv" % (DATA_DIR), 'r') as descfile:
r = csv.reader(descfile)
# header
next(r)
for row in r:
code = row[1]
desc = row[-1]
desc_dict[reformat(code, True)] = desc
with open("%s/D_ICD_PROCEDURES.csv" % (DATA_DIR), 'r') as descfile:
r = csv.reader(descfile)
# header
next(r)
for row in r:
code = row[1]
desc = row[-1]
if code not in desc_dict.keys():
desc_dict[reformat(code, False)] = desc
with open('%s/ICD9_descriptions' % DATA_DIR, 'r') as labelfile:
for _, row in enumerate(labelfile):
row = row.rstrip().split()
code = row[0]
if code not in desc_dict.keys():
desc_dict[code] = ' '.join(row[1:])
return desc_dict
def load_full_codes(train_path, version='mimic3'):
"""
Inputs:
train_path: path to train dataset
version: which (MIMIC) dataset
Outputs:
code lookup, description lookup
"""
# get description lookup
desc_dict = load_code_descriptions(version=version)
# build code lookups from appropriate datasets
if version == 'mimic2':
ind2c = defaultdict(str)
codes = set()
with open('%s/proc_dsums.csv' % MIMIC_2_DIR, 'r') as f:
r = csv.reader(f)
# header
next(r)
for row in r:
codes.update(set(row[-1].split(';')))
codes = set([c for c in codes if c != ''])
ind2c = defaultdict(str, {i: c for i, c in enumerate(sorted(codes))})
else:
codes = set()
for split in ['train', 'dev', 'test']:
with open(train_path.replace('train', split), 'r') as f:
lr = csv.reader(f)
next(lr)
for row in lr:
for code in row[3].split(';'):
codes.add(code)
codes = set([c for c in codes if c != ''])
ind2c = defaultdict(str, {i: c for i, c in enumerate(sorted(codes))})
return ind2c, desc_dict
class MimicFullDataset(Dataset):
def __init__(self, version, mode, truncate_length, tokenizer,
label_truncate_length=30, term_count=1):
self.version = version
self.mode = mode
self.tokenizer = tokenizer
if version == 'mimic2':
raise NotImplementedError
if version in ['mimic3', 'mimic3-50', 'mimic3-50l']:
self.path = os.path.join(MIMIC_3_DIR, f"{version}_{mode}.json")
if version in ['mimic3']:
self.train_path = os.path.join(MIMIC_3_DIR, "train_full.csv")
if version in ['mimic3-50']:
self.train_path = os.path.join(MIMIC_3_DIR, "train_50.csv")
if version in ['mimic3-50l']:
self.train_path = os.path.join(MIMIC_3_DIR, "train_50l.csv")
with open(self.path, "r") as f:
self.df = ujson.load(f)
self.ind2c, desc_dict = load_full_codes(self.train_path, version=version)
# self.part_icd_codes = list(self.ind2c.values())
self.c2ind = {c: ind for ind, c in self.ind2c.items()}
self.code_count = len(self.ind2c)
if mode == "train":
print(f'Code count: {self.code_count}')
self.ind2mc, self.mc2ind = create_main_code(self.ind2c)
self.main_code_count = len(self.ind2mc)
if mode == "train":
print(f'Main code count: {self.main_code_count}')
self.len = len(self.df)
self.truncate_length = truncate_length
# prep prompt
if version == "mimic3-50": #TODO: remove unique sorted ICD_50_RANK for mimic3-50
desc_list = []
icd_50_rank = ICD_50_RANK
assert len(icd_50_rank) == len(self.ind2c)
for icd9, info in icd_50_rank:
desc_list.append(desc_dict[icd9].lower().split(",")[0])
else:
desc_list = []
icd_50_rank = [(v,0) for k,v in self.ind2c.items()]
for icd9, info in icd_50_rank:
desc_list.append(desc_dict[icd9].lower().split(",")[0])
if term_count == 1:
c_desc_list = desc_list
else:
c_desc_list = []
with open(f'./icd_mimic3_random_sort.json', 'r') as f: #TODO: change path
icd_syn = ujson.load(f)
for (code, info), tmp_desc in zip(icd_50_rank,desc_list):
tmp_desc = [tmp_desc]
new_terms = icd_syn.get(code, [])
if len(new_terms) >= term_count - 1:
tmp_desc.extend(new_terms[0:term_count - 1])
else:
tmp_desc.extend(new_terms)
repeat_count = int (term_count / len(tmp_desc)) + 1
tmp_desc = (tmp_desc * repeat_count)[0:term_count]
c_desc_list.append(tmp_desc)
descriptions = " " + " <mask>, ".join(desc_list) + " <mask>. "
tmp = self.tokenizer.tokenize(descriptions)
self.global_window = len(tmp) + 1
assert self.global_window < 501 # only for gpu memory efficiency
self.label_yes = self.tokenizer("yes")['input_ids'][1] # 10932
self.label_no = self.tokenizer("no")['input_ids'][1] # 2362
self.mask_token_id = tokenizer.mask_token_id
# num_raw_token = []
# num_pro_token = []
# for index in range(self.len):
# text = self.df[index]['TEXT']
# text = re.sub(r'\[\*\*[^\]]*\*\*\]', '', text) # remove any mimic special token like [**2120-2-28**] or [**Hospital1 3278**]
# text = re.sub(r' +', ' ', text)
# label = str(self.df[index]['LABELS']).split(';')
# # self.process(text, label)
# tmp = self.tokenizer.tokenize(text)
# # num_raw_token.append(len(self.tokenizer.convert_tokens_to_string(tmp[:self.truncate_length]).split()))
# num_pro_token.append(len(tmp))
# num_pro_token = np.array(num_pro_token)
# print(f'Num of examples exceed max length {self.truncate_length}: {(num_pro_token > self.truncate_length).sum()} / {len(num_pro_token)}')
# print(f'Avg text length: {num_pro_token.mean()}')
# print(f'Std text length: {np.std(num_pro_token)}')
# print(f'Med text length: {np.median(num_pro_token)}')
# print(f'Max text length: {num_pro_token.max()}')
# print(f'Min text length: {num_pro_token.min()}')
num_pro_token = []
to_sav = []
countb = 0
for index in range(self.len):
text = self.df[index]['TEXT']
text = re.sub(r'\[\*\*[^\]]*\*\*\]', '', text) # remove any mimic special token like [**2120-2-28**] or [**Hospital1 3278**]
tmp = self.tokenizer.tokenize(descriptions + proc_text(text))
if len(tmp) <= self.truncate_length:
num_pro_token.append(len(tmp))
self.df[index]['TEXT'] = descriptions + proc_text(text)
else:
headers_pos = get_headersandindex(text)
if len(headers_pos) > 1:
new_text = get_subnote(text, headers_pos)
countb += 1
text = new_text
tmp = self.tokenizer.tokenize(descriptions + proc_text(text))
# else:
# to_sav.append((str(self.df[index]['LABELS']),text))
num_pro_token.append(len(tmp))
self.df[index]['TEXT'] = descriptions + proc_text(text)
num_pro_token = np.array(num_pro_token)
print(f'Num of examples exceed max length {self.truncate_length}: {(num_pro_token > self.truncate_length).sum()} / {len(num_pro_token)}')
print(f'Avg text length: {num_pro_token.mean()}')
print(f'Std text length: {np.std(num_pro_token)}')
print(f'Med text length: {np.median(num_pro_token)}')
print(f'Max text length: {num_pro_token.max()}')
print(f'Min text length: {num_pro_token.min()}')
# with open('abc3.txt', 'w') as f:
# for a,b in to_sav:
# f.write(f"xxx\n{a}\n{b}\n")
def __len__(self):
return self.len
def process(self, text, label):
input_word = self.tokenizer(text, padding='max_length', truncation='longest_first', max_length=self.truncate_length,
return_token_type_ids=True, return_attention_mask=True
)
binary_label = [self.label_no] * self.code_count
for l in label:
if l in self.c2ind:
binary_label[self.c2ind[l]] = self.label_yes
# main_label = [0] * self.main_code_count
# for l in label:
# if l.split('.')[0] in self.mc2ind:
# main_label[self.mc2ind[l.split('.')[0]]] = 1
input_word["label_ids"] = torch.tensor(binary_label, dtype=torch.long)
return input_word
def __getitem__(self, index):
# proc label
label = str(self.df[index]['LABELS']).split(';')
# proc input
text = self.df[index]['TEXT']
processed = self.process(text, label)
return processed
@dataclass
class DataCollatorForMimic:
global_attention_mask_size: int
global_attention_strides: int
def __call__(self, features: List[InputDataClass]) -> Dict[str, torch.Tensor]:
first = features[0]
batch = {}
# Special handling for labels.
# Ensure that tensor is created with the correct type
# (it should be automatically the case, but let's make sure of it.)
if "label" in first and first["label"] is not None:
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
dtype = torch.long if isinstance(label, int) else torch.float
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
elif "label_ids" in first and first["label_ids"] is not None:
if isinstance(first["label_ids"], torch.Tensor):
batch["labels"] = torch.stack([f["label_ids"] for f in features])
else:
dtype = torch.long if type(first["label_ids"][0]) is int else torch.float
batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype)
# Handling of all other possible keys.
# Again, we will use the first element to figure out which key/values are not None for this model.
for k, v in first.items():
if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
if isinstance(v, torch.Tensor):
batch[k] = torch.stack([f[k] for f in features])
else:
batch[k] = torch.tensor([f[k] for f in features])
global_attention_mask = torch.zeros_like(batch["input_ids"])
# global attention on cls token
global_attention_mask[:,0:self.global_attention_mask_size:self.global_attention_strides] = 1
batch["global_attention_mask"] = global_attention_mask
return batch
def my_collate_fn(features: List[InputDataClass]) -> Dict[str, torch.Tensor]:
return 0
def my_collate_fn_led(features: List[InputDataClass]) -> Dict[str, torch.Tensor]:
"""
Very simple data collator that simply collates batches of dict-like objects and performs special handling for
potential keys named:
- ``label``: handles a single value (int or float) per object
- ``label_ids``: handles a list of values per object
Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs
to the model. See glue and ner for example of how it's useful.
"""
first = features[0]
batch = {}
# Special handling for labels.
# Ensure that tensor is created with the correct type
# (it should be automatically the case, but let's make sure of it.)
if "label" in first and first["label"] is not None:
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
dtype = torch.long if isinstance(label, int) else torch.float
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
elif "label_ids" in first and first["label_ids"] is not None:
if isinstance(first["label_ids"], torch.Tensor):
batch["labels"] = torch.stack([f["label_ids"] for f in features])
else:
dtype = torch.long if type(first["label_ids"][0]) is int else torch.float
batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype)
# Handling of all other possible keys.
# Again, we will use the first element to figure out which key/values are not None for this model.
for k, v in first.items():
if k != "token_type_ids":
if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
if isinstance(v, torch.Tensor):
batch[k] = torch.stack([f[k] for f in features])
else:
batch[k] = torch.tensor([f[k] for f in features])
eos_mask = batch["input_ids"].eq(2) # majic number: 2 is config.eos_token_id for led
global_attention_mask = torch.zeros_like(batch["input_ids"])
# global attention on cls token
global_attention_mask[eos_mask] = 1
batch["global_attention_mask"] = global_attention_mask
batch["decoder_input_ids"] = torch.tensor([[2]]*batch["input_ids"].shape[0])
return batch
def modify_rule(ys, preds, examples, ind2c, c2ind, tokenizer):
preds = np.copy(preds)
with open('/home/zhichaoyang/mimic3/ICD-MSMN/embedding/icd_mimic3_random_sort.json', 'r') as f:
icd2des = json.load(f)
assert len(ys) == len(preds)
assert len(ys) == len(examples)
add_rules = ["511.9", "285.9", "287.5", "401.9", "584.9", "530.81", "276.2", "585.9"]
counta = 0
count_change= 0
for y, pred, example in zip(ys, preds, examples):
input_str = tokenizer.decode(example["input_ids"]).lower()
trut = []
for indexx, label in enumerate(y):
if label > 0:
trut += [ind2c[indexx]]
to_adds = []
for a in trut:
if a in add_rules:
to_adds.append(a)
for a in set(to_adds):
for uni_str in icd2des[a][:20]:
if uni_str in input_str:
if pred[c2ind[a]] < 0:
count_change += 1
preds[counta][c2ind[a]] = 0.5
counta += 1
# print(count_change)
return preds