-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtext-pre-processing script.R
370 lines (311 loc) · 13.1 KB
/
text-pre-processing script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
library(tidyverse)
library(stringr)
library(tidytext)
library(ggpubr)
library(formattable)
### Pre-Processing ###
# Read in local copy of poki.
poki <- read_csv("poki.csv")
#Tokenization
words_total <- poki %>%
unnest_tokens(word, text)
non_english <- words_total[which(grepl("[^\x01-\x7F]+", words_total$word)),]
non_english$word <- gsub("â", "", non_english$word)
#Stop words and Gender Data
#Download Cornell Stop list from: http://www.lextek.com/manuals/onix/stopwords2.html
cornell_stop <- read.delim("~/CornellStopList.txt", header = FALSE, stringsAsFactors = FALSE, col.names = c("word"))
other_stop <- bind_rows(data_frame(word = c("?", "i?'m", "im", "don?'t", "br", "it?'s", "gt", "x85", "2", "can?'t", "1", "3", "i?'ll",
"ha", "la")))
#Download Gender Census data from: https://www.ssa.gov/oact/babynames/limits.html
gender <- read.delim("~/R/Sentiment Analysis/yob2017.txt", header = FALSE) %>%
separate(V1, c("author", "gender", "frequency")) %>%
mutate(author = tolower(author)) %>%
arrange(author) %>%
as_tibble()
gender_new <- gender %>%
spread(key = gender, value = frequency) %>%
mutate_at(c(2:3), funs(replace(., is.na(.), 0))) %>%
rename("female" = "F",
"male" = "M") %>%
mutate(male = as.numeric(male),
female = as.numeric(female)) %>%
mutate(conf_female = round(female/(male + female), 2)) %>%
mutate(gender = case_when(conf_female >= .95 ~ "Female",
conf_female <= .05 ~ "Male",
conf_female > .05 & conf_female < .95 ~ "Ambiguous"))
#Lexicons
#Download VAD and Emotion Intensity (AIL) from: http://saifmohammad.com/WebPages/lexicons.html
arousal <- read.delim("~/R/Sentiment Analysis/Lexicon/a.scores", header = FALSE) %>%
rename(word = V1,
arousal = V2) %>%
mutate(word = str_to_lower(word))
valence <- read.delim("~/R/Sentiment Analysis/Lexicon/v.scores", header = FALSE) %>%
rename(word = V1,
valence = V2) %>%
mutate(word = str_to_lower(word))
dominance <- read.delim("~/R/Sentiment Analysis/Lexicon/d.scores", header = FALSE) %>%
rename(word = V1,
dominance = V2) %>%
mutate(word = str_to_lower(word))
AIL <- read.delim("~/R/Sentiment Analysis/Lexicon/AffectIntensity.txt", stringsAsFactors = FALSE) %>%
rename(word = term,
emotion = AffectDimension) %>%
mutate(word = str_to_lower(word))
AIL_wide <- AIL %>%
spread(emotion, score)
#Aligning Words with Lexicons
words_nonstop <- words_total %>%
anti_join(cornell_stop) %>%
anti_join(other_stop)
words_emotion <- words_nonstop %>%
inner_join(valence) %>%
left_join(arousal) %>%
left_join(dominance) %>%
left_join(AIL_wide)
#Computing scores at poem level
poems_full <- words_emotion %>%
group_by(id, grade, author) %>%
summarize(val_sd = sd(valence, na.rm = TRUE),
aro_sd = sd(arousal, na.rm = TRUE),
dom_sd = sd(dominance, na.rm = TRUE),
anger_sd = sd(anger, na.rm = TRUE),
fear_sd = sd(fear, na.rm = TRUE),
sadness_sd = sd(sadness, na.rm = TRUE),
joy_sd = sd(joy, na.rm = TRUE),
valence = mean(valence, na.rm = TRUE),
arousal = mean(arousal, na.rm = TRUE),
dominance = mean(dominance, na.rm = TRUE),
anger = mean(anger, na.rm = TRUE),
fear = mean(fear, na.rm = TRUE),
sadness = mean(sadness, na.rm = TRUE),
joy = mean(joy, na.rm = TRUE),
total_words = n()) %>%
ungroup() %>%
left_join(gender_new) %>%
select(-c(male, female, conf_female)) %>%
transmute_all(funs(ifelse(is.nan(.), NA, .)))
write_csv(poems_full, "poki-analysis.csv")
#Additional Analyses
#Gender differences in words
words_prop_gender <- words_emotion %>%
inner_join(gender_new) %>%
filter(gender %in% c("Male", "Female")) %>%
group_by(gender) %>%
mutate(total = n()) %>%
group_by(word, gender) %>%
mutate(n = n(),
prop = n / total) %>%
select(word, gender, prop) %>%
group_by(word) %>%
mutate(n_word = n()) %>%
distinct(.) %>%
ungroup() %>%
spread(gender, prop, convert = TRUE) %>%
mutate(Female = ifelse(is.na(Female), 0, Female),
Male = ifelse(is.na(Male), 0, Male)) %>%
mutate(diff = Female - Male,
Male = scales::percent(Male),
Female = scales::percent(Female))
plots <- words_prop_gender %>%
arrange(desc(abs(diff))) %>%
inner_join(valence) %>%
inner_join(arousal) %>%
inner_join(dominance) %>%
left_join(AIL_wide)
hi_val <- plots %>%
filter(valence > .8) %>%
top_n(15, abs(diff)) %>%
ggplot(aes(x = reorder(word, desc(diff)), y = diff, fill = diff)) +
geom_col() +
labs(x = NULL,
y = NULL,
title = "High Valence (> 0.8)") +
scale_fill_gradient2(low = "#FF6600", mid = "#8C8C8C", high = "#0000FF", limits = c(-.0025, .0025), na.value = "#0000FF") +
scale_y_continuous(labels = scales::percent_format()) +
coord_flip() +
geom_text(aes(label = round(valence, 2)), position = position_stack(vjust = .5), size = 4, color = "white") +
theme_bw(base_size = 16) +
theme(legend.position = "none",
axis.text.y = element_text(size = 16),
plot.title = element_text(hjust = .5))
hi_val
lo_val <- plots %>%
filter(valence < .2) %>%
top_n(15, abs(diff)) %>%
ggplot(aes(x = reorder(word, desc(diff)), y = diff, fill = diff)) +
geom_col() +
labs(x = NULL,
y = NULL,
title = "Low Valence (< 0.2)") +
scale_fill_gradient2(low = "#FF6600", mid = "#8C8C8C", high = "#0000FF", limits = c(-.001, .001), na.value = "#0000FF") +
scale_y_continuous(labels = scales::percent_format()) +
coord_flip() +
geom_text(aes(label = round(valence, 2)), position = position_stack(vjust = .5), size = 4, color = "white") +
theme_bw(base_size = 16) +
theme(legend.position = "none",
axis.text.y = element_text(size = 16),
plot.title = element_text(hjust = .5))
lo_val
hi_aro <- plots %>%
filter(arousal > .8) %>%
top_n(15, abs(diff)) %>%
ggplot(aes(x = reorder(word, desc(diff)), y = diff, fill = diff)) +
geom_col() +
labs(x = NULL,
y = NULL,
title = "High Arousal (> 0.8)",
fill = NULL) +
scale_fill_gradient2(low = "#FF6600", mid = "#8C8C8C", high = "#0000FF", limits = c(-.00035, .0015), breaks = c(-.00035, .0015), na.value = "#FF6600") +
scale_y_continuous(labels = scales::percent_format()) +
coord_flip() +
geom_text(aes(label = round(arousal, 2)), position = position_stack(vjust = .5), size = 4, color = "white") +
theme_bw(base_size = 16) +
theme(axis.text.y = element_text(size = 16),
plot.title = element_text(hjust = .5),
legend.position = "none")
hi_aro
lo_aro <- plots %>%
filter(arousal < .2) %>%
top_n(15, abs(diff)) %>%
ggplot(aes(x = reorder(word, desc(diff)), y = diff, fill = diff)) +
geom_col() +
labs(x = NULL,
y = NULL,
title = "Low Arousal (< 0.2)",
fill = NULL) +
scale_fill_gradient2(low = "#FF6600", mid = "#8C8C8C", high = "#0000FF", limits = c(-.00035, .00082), breaks = c(-.00035, .0015), na.value = "#FF6600") +
scale_y_continuous(labels = scales::percent_format()) +
coord_flip() +
geom_text(aes(label = round(arousal, 2)), position = position_stack(vjust = .5), size = 4, color = "white") +
theme_bw(base_size = 16) +
theme(axis.text.y = element_text(size = 16),
plot.title = element_text(hjust = .5),
legend.position = "none")
lo_aro
hi_dom <- plots %>%
filter(dominance > .8) %>%
top_n(15, abs(diff)) %>%
ggplot(aes(x = reorder(word, desc(diff)), y = diff, fill = diff)) +
geom_col() +
labs(x = NULL,
y = NULL,
title = "High Dominance (> 0.8)") +
scale_fill_gradient2(low = "#FF6600", mid = "#8C8C8C", high = "#0000ff", limits = c(-.00083, .0009), na.value = "#FF6600") +
scale_y_continuous(labels = scales::percent_format()) +
coord_flip() +
geom_text(aes(label = round(dominance, 2)), position = position_stack(vjust = .5), size = 4, color = "white") +
theme_bw(base_size = 16) +
theme(legend.position = "none",
axis.text.y = element_text(size = 16),
plot.title = element_text(hjust = .5))
hi_dom
lo_dom <- plots %>%
filter(dominance < .2) %>%
top_n(15, abs(diff)) %>%
ggplot(aes(x = reorder(word, desc(diff)), y = diff, fill = diff)) +
geom_col() +
labs(x = NULL,
y = NULL,
title = "Low Dominance (< 0.2)") +
scale_fill_gradient2(low = "#FF6600", mid = "#8C8C8C", high = "#0000ff", limits = c(-.00033, .00033), na.value = "#FF6600") +
scale_y_continuous(labels = scales::percent_format()) +
coord_flip() +
geom_text(aes(label = round(dominance, 2)), position = position_stack(vjust = .5), size = 4, color = "white") +
theme_bw(base_size = 16) +
theme(legend.position = "none",
axis.text.y = element_text(size = 16),
plot.title = element_text(hjust = .5))
lo_dom
anger_hi <- plots %>%
filter(anger > .8) %>%
top_n(15, abs(diff)) %>%
ggplot(aes(x = reorder(word, desc(diff)), y = diff, fill = diff)) +
geom_col() +
labs(x = NULL,
y = NULL,
title = "High Anger Intensity (> 0.8)") +
scale_fill_gradient2(low = "#FF6600", mid = "#8C8C8C", high = "#0000ff", limits = c(-.00009, .00009), na.value = "#FF6600") +
scale_y_continuous(labels = scales::percent_format()) +
coord_flip() +
geom_text(aes(label = round(anger, 2)), position = position_stack(vjust = .5), size = 4, color = "white") +
theme_bw(base_size = 16) +
theme(legend.position = "none",
axis.text.y = element_text(size = 16),
plot.title = element_text(hjust = .5))
anger_hi
sadness_hi <- plots %>%
filter(sadness > .8) %>%
top_n(15, abs(diff)) %>%
ggplot(aes(x = reorder(word, desc(diff)), y = diff, fill = diff)) +
geom_col() +
labs(x = NULL,
y = NULL,
title = "High Sadness Intensity (> 0.8)") +
scale_fill_gradient2(low = "#FF6600", mid = "#8C8C8C", high = "#0000ff", limits = c(-.0003, .0002), na.value = "#0000FF") +
scale_y_continuous(labels = scales::percent_format()) +
coord_flip() +
geom_text(aes(label = round(sadness, 2)), position = position_stack(vjust = .5), size = 4, color = "white") +
theme_bw(base_size = 16) +
theme(legend.position = "none",
axis.text.y = element_text(size = 16),
plot.title = element_text(hjust = .5))
sadness_hi
fear_hi <- plots %>%
filter(fear > .8) %>%
top_n(15, abs(diff)) %>%
ggplot(aes(x = reorder(word, desc(diff)), y = diff, fill = diff)) +
geom_col() +
labs(x = NULL,
y = NULL,
title = "High Fear Intensity (> 0.8)") +
scale_fill_gradient2(low = "#FF6600", mid = "#8C8C8C", high = "#0000ff", limits = c(-.0003, .0002), na.value = "#0000FF") +
scale_y_continuous(labels = scales::percent_format()) +
coord_flip() +
geom_text(aes(label = round(fear, 2)), position = position_stack(vjust = .5), size = 4, color = "white") +
theme_bw(base_size = 16) +
theme(legend.position = "none",
axis.text.y = element_text(size = 16),
plot.title = element_text(hjust = .5))
fear_hi
joy_hi <- plots %>%
filter(joy > .8) %>%
top_n(15, abs(diff)) %>%
ggplot(aes(x = reorder(word, desc(diff)), y = diff, fill = diff)) +
geom_col() +
labs(x = NULL,
y = NULL,
title = "High Joy Intensity (> 0.8)") +
scale_fill_gradient2(low = "#FF6600", mid = "#8C8C8C", high = "#0000ff", limits = c(-.0003, .0002), na.value = "#0000FF") +
scale_y_continuous(labels = scales::percent_format()) +
coord_flip() +
geom_text(aes(label = round(joy, 2)), position = position_nudge(y = .0005), size = 4.5, color = "black") +
theme_bw(base_size = 16) +
theme(legend.position = "none",
axis.text.y = element_text(size = 16),
plot.title = element_text(hjust = .5))
joy_hi
VAD_plot <- ggarrange(hi_val, lo_val, hi_aro, lo_aro, hi_dom, lo_dom,
labels = c("A", "B", "C", "D", "E", "F"),
ncol = 2, nrow = 3)
VAD_plot
EI_plot <- ggarrange(anger_hi, sadness_hi, fear_hi, joy_hi,
labels = c("A", "B", "C", "D"),
ncol = 2, nrow = 2)
EI_plot
sample_poem <- words_emotion %>%
filter(id == 99545) %>%
select(word, valence, arousal, dominance, anger, fear, sadness, joy) %>%
group_by(word) %>%
mutate('# of occurrences' = n()) %>%
ungroup()
formattable(head(sample_poem),
align =c("l","r","r","r","r", "r", "r", "r", "r"),
list(`word` = formatter("span", style = ~ style(color = "grey", font.weight = "bold")),
`valence` = formatter("span", style = ~ style(color = "black", font.weight = "bold")),
`arousal` = formatter("span", style = ~ style(color = "black", font.weight = "bold")),
`dominance` = formatter("span", style = ~ style(color = "black", font.weight = "bold")),
`anger` = formatter("span", style = ~ style(color = "black", font.weight = "bold")),
`fear`= formatter("span", style = ~ style(color = "black", font.weight = "bold")),
`sadness` = formatter("span", style = ~ style(color = "black", font.weight = "bold")),
`joy` = formatter("span", style = ~ style(color = "black", font.weight = "bold")),
`# of occurrences` = formatter("span", style = ~ style(color = "black", font.weight = "bold"))))