-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRegular.dfy
280 lines (248 loc) · 7.73 KB
/
Regular.dfy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
// inspired by https://stackoverflow.com/questions/64178349/how-to-define-this-regular-language-in-dafny
// this file shows that the L from that post is recognized by an NFA
predicate IsAOrB(c: char)
{
c == 'a' || c == 'b'
}
predicate ContainsOnlyAsAndBs(s: string)
{
forall c | c in s :: IsAOrB(c)
}
predicate InL(w: string)
requires ContainsOnlyAsAndBs(w)
{
exists x | ContainsOnlyAsAndBs(x) && x != [] :: w == ['a'] + x + ['a']
}
function L(): iset<string>
{
iset s | ContainsOnlyAsAndBs(s) && InL(s)
}
datatype NFA<S> = NFA(
alphabet: set<char>,
states: set<S>,
initial: set<S>,
accepting: set<S>,
epsilon_step: map<S, set<S>>,
char_step: map<(S,char), set<S>>
)
predicate WFNFA<S>(nfa: NFA<S>)
{
&& nfa.initial <= nfa.states
&& nfa.accepting <= nfa.states
&& (forall s | s in nfa.states ::
s in nfa.epsilon_step && nfa.epsilon_step[s] <= nfa.states)
&& (forall s, c | s in nfa.states && c in nfa.alphabet ::
(s, c) in nfa.char_step && nfa.char_step[(s,c)] <= nfa.states)
}
function RelationStep<S>(universe: set<S>, relation: map<S, set<S>>, initial: set<S>): (step: set<S>)
requires initial <= universe
requires forall s | s in universe :: s in relation && relation[s] <= universe
ensures step <= universe
{
set s0, s1 | s0 in initial && s1 in relation[s0] :: s1
}
function ReflexiveTransitiveClosure<S>(universe: set<S>, relation: map<S, set<S>>, initial: set<S>): (closure: set<S>)
requires initial <= universe
requires forall s | s in universe :: s in relation && relation[s] <= universe
decreases universe - initial
ensures closure <= universe
{
var next := initial + RelationStep(universe, relation, initial);
if next <= initial
then initial
else ReflexiveTransitiveClosure(universe, relation, next)
}
function NFACharStep<S>(nfa: NFA<S>, current_states: set<S>, next_char: char): (step: set<S>)
requires WFNFA(nfa)
requires next_char in nfa.alphabet
requires current_states <= nfa.states
ensures step <= nfa.states
{
set s0, s1 | s0 in current_states && s1 in nfa.char_step[(s0, next_char)] :: s1
}
function NFAStep<S>(nfa: NFA<S>, current_states: set<S>, next_char: char): (step: set<S>)
requires WFNFA(nfa)
requires next_char in nfa.alphabet
requires current_states <= nfa.states
ensures step <= nfa.states
{
var closed_current_states := ReflexiveTransitiveClosure(nfa.states, nfa.epsilon_step, current_states);
NFACharStep(nfa, closed_current_states, next_char)
}
predicate StringInAlphabet(alphabet: set<char>, s: string)
{
forall c | c in s :: c in alphabet
}
predicate AcceptsFromStates<S>(nfa: NFA<S>, current_states: set<S>, s: string)
requires WFNFA(nfa)
requires StringInAlphabet(nfa.alphabet, s)
requires current_states <= nfa.states
decreases s
{
if s == []
then exists s | s in current_states :: s in nfa.accepting
else AcceptsFromStates(nfa, NFAStep(nfa, current_states, s[0]), s[1..])
}
predicate Accepts<S>(nfa: NFA<S>, s: string)
requires WFNFA(nfa)
requires StringInAlphabet(nfa.alphabet, s)
{
AcceptsFromStates(nfa, nfa.initial, s)
}
function LanguageOf<S>(nfa: NFA<S>): iset<string>
requires WFNFA(nfa)
{
iset s | StringInAlphabet(nfa.alphabet, s) && Accepts(nfa, s)
}
predicate IsRegular<S(!new)>(L: iset<string>)
{
exists nfa: NFA<S> | WFNFA(nfa) :: L == LanguageOf(nfa)
}
/*
nfa for L:
+-a,b-
| /
| /
V /
(0) -a-> (1) -a,b-> (2) -a-> ((3))
*/
datatype S = S0 | S1 | S2 | S3
function CharStep(s: S, c: char): set<S>
requires IsAOrB(c)
{
match (s, c)
case (S0, 'a') => {S1}
case (S0, 'b') => {}
case (S1, _) => {S2}
case (S2, 'a') => {S2, S3}
case (S2, 'b') => {S2}
case (S3, _) => {}
}
predicate IsState(s: S)
{
true
}
function LNFA(): NFA<S>
{
var alphabet := {'a', 'b'};
var states := {S0, S1, S2, S3};
var initial := {S0};
var accepting := {S3};
var epsilon_step := map s | IsState(s) :: {};
var char_step_domain := set s, c | s in states && c in alphabet :: (s, c);
var char_step := map p | p in char_step_domain :: var (s, c) := p; CharStep(s, c);
NFA(alphabet, states, initial, accepting, epsilon_step, char_step)
}
lemma AcceptsImpliesInL(s: string)
requires StringInAlphabet(LNFA().alphabet, s)
requires Accepts(LNFA(), s)
ensures InL(s)
{
var nfa := LNFA();
var current_states := nfa.initial;
var s' := s;
var x := [];
while s' != []
invariant StringInAlphabet(nfa.alphabet, s')
invariant current_states <= nfa.states
invariant AcceptsFromStates(nfa, current_states, s')
invariant ContainsOnlyAsAndBs(x)
invariant S0 in current_states ==> s == s' && x == []
invariant S1 in current_states ==> s == ['a'] + x + s'
invariant S2 in current_states ==> x != [] && s == ['a'] + x + s'
invariant S3 in current_states ==> x != [] && x[..|x|-1] != [] && x[|x|-1] == 'a' &&
s == ['a'] + x + s'
decreases s'
{
if S1 in current_states || S2 in current_states {
x := x + [s'[0]];
}
current_states := NFAStep(nfa, current_states, s'[0]);
s' := s'[1..];
}
var y := x[..|x|-1];
assert ContainsOnlyAsAndBs(y); // trigger InL
}
lemma ReflexiveTransitiveClosureEmptyIdentity<S>(universe: set<S>, relation: map<S, set<S>>, initial: set<S>)
requires initial <= universe
requires forall s | s in universe :: s in relation && relation[s] == {}
ensures ReflexiveTransitiveClosure(universe, relation, initial) == initial
{}
lemma LNFAStepIsCharStep(current_states: set<S>, next_char: char)
requires next_char in LNFA().alphabet
requires current_states <= LNFA().states
ensures NFAStep(LNFA(), current_states, next_char) == NFACharStep(LNFA(), current_states, next_char)
{}
lemma InLImpliesAccepts(s: string)
requires ContainsOnlyAsAndBs(s)
requires InL(s)
ensures Accepts(LNFA(), s)
{
var nfa := LNFA();
var x :| ContainsOnlyAsAndBs(x) && x != [] && s == ['a'] + x + ['a'];
assert StringInAlphabet(nfa.alphabet, s);
assert |s| >= 3;
calc <== {
Accepts(nfa, s);
AcceptsFromStates(nfa, nfa.initial, s);
<==> AcceptsFromStates(nfa, {S0}, s);
AcceptsFromStates(nfa, NFAStep(nfa, {S0}, s[0]), s[1..]);
AcceptsFromStates(nfa, NFACharStep(nfa, {S0}, s[0]), s[1..]);
{
assert S1 in nfa.char_step[(S0, s[0])]; // trigger NFACharStep
assert NFACharStep(nfa, {S0}, s[0]) == {S1};
}
AcceptsFromStates(nfa, {S1}, s[1..]);
{
assert S2 in nfa.char_step[(S1, s[1])]; // trigger NFACharStep
assert NFACharStep(nfa, {S1}, s[1]) == {S2};
}
AcceptsFromStates(nfa, {S2}, s[2..]);
}
assert AcceptsFromStates(nfa, {S2}, s[2..]) ==> Accepts(nfa, s);
var s' := s[2..];
assert s == ['a'] + [s[1]] + s';
var current_states := {S2};
while |s'| > 1
invariant |s'| >= 1
invariant s'[|s'|-1] == 'a'
invariant StringInAlphabet(nfa.alphabet, s')
invariant current_states <= nfa.states
invariant AcceptsFromStates(nfa, current_states, s') ==> Accepts(nfa, s)
invariant S2 in current_states
decreases s'
{
current_states := NFAStep(nfa, current_states, s'[0]);
s' := s'[1..];
}
assert |s'| == 1;
assert s' == [s'[0]];
assert s'[0] == 'a';
var last_states := NFAStep(nfa, current_states, 'a');
assert S3 in last_states;
calc <== {
AcceptsFromStates(nfa, current_states, s');
AcceptsFromStates(nfa, current_states, ['a']);
AcceptsFromStates(nfa, last_states, []);
true;
}
}
lemma LIsRegular()
ensures IsRegular<S>(L())
{
var nfa := LNFA();
assert WFNFA(nfa);
forall s: string
ensures s in LanguageOf(nfa) <==> s in L()
{
if s in LanguageOf(nfa) {
AcceptsImpliesInL(s);
assert s in L();
}
if s in L() {
InLImpliesAccepts(s);
assert s in LanguageOf(nfa);
}
}
assert LanguageOf(nfa) == L();
}